分析 由已知中的三視圖,可知該幾何體是一個四棱錐,求出底面面積,代入棱錐體積公式,可得答案.
解答 解:由已知中的三視圖,可知該幾何體是一個放倒的四棱錐,如,當(dāng)xy取得最大值時,
由x2+y2=25≥2xy,
當(dāng)且僅當(dāng)x=y時xy最大,此時x=y=$\frac{5\sqrt{2}}{2}$,
所以棱錐的體積V=$\frac{1}{3}×\frac{1}{2}×\frac{3}{2}×\frac{5\sqrt{2}}{2}×\sqrt{\frac{25}{2}-7}×\sqrt{7}$=$\frac{5\sqrt{77}}{8}$;
故答案為:$\frac{5\sqrt{77}}{8}$.
點評 本題考查的知識點是由三視圖求體積,解決本題的關(guān)鍵是得到該幾何體的形狀.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=±\sqrt{3}x$ | B. | $y=±\frac{{\sqrt{3}}}{3}x$ | C. | $y=±\sqrt{2}x$ | D. | y=±2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}π}}{3}$ | B. | $\frac{{\sqrt{6}π}}{3}$ | C. | $\frac{{2\sqrt{3}π}}{3}$ | D. | $\frac{{2\sqrt{6}π}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1000$\sqrt{2}$π | B. | 125$\sqrt{2}$π | C. | $\frac{1000\sqrt{2}π}{3}$ | D. | $\frac{125\sqrt{2}π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com