若橢圓C1:+=1(0<b<2)的離心率等于,拋物線C2:x2=2py(p>0)的焦點(diǎn)在橢圓C1的頂點(diǎn)上.
(1)求拋物線C2的方程;
(2)若過(guò)M(-1,0)的直線l與拋物線C2交于E、F兩點(diǎn),又過(guò)E、F作拋物線C2的切線l1、l2,當(dāng)l1⊥l2時(shí),求直線l的方程.
(1)已知橢圓的長(zhǎng)半軸長(zhǎng)為a=2,半焦距c=,
由離心率e===得,b2=1.
∴橢圓的上頂點(diǎn)為(0,1),即拋物線的焦點(diǎn)為(0,1),
∴p=2,拋物線的方程為x2=4y.
(2)由題知直線l的斜率存在且不為零,則可設(shè)直線l的方程為y=k(x+1),E(x1,y1),F(x2,y2),
∵y=x2,∴y′=x,
∴切線l1、l2的斜率分別為x1、x2,
當(dāng)l1⊥l2時(shí),x1·x2=-1,即x1·x2=-4,
由得x2-4kx-4k=0,
由Δ=(-4k)2-4×(-4k)>0,解得k<-1或k>0.
又x1·x2=-4k=-4,得k=1.
∴直線l的方程為y=x+1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知拋物線C:y2=4x的焦點(diǎn)為F,直線y=2x-4與C交于A、B兩點(diǎn),則cos∠AFB=( )
A. B.
C.- D.-
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知斜率為1的直線l與雙曲線C:-=1(a>0,b>0)相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1,3).
(1)求C的離心率;
(2)設(shè)C的右頂點(diǎn)為A,右焦點(diǎn)為F,|DF|·|BF|=17,證明:過(guò)A、B、D三點(diǎn)的圓與x軸相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知直線l與拋物線y2=8x交于A,B兩點(diǎn),且l經(jīng)過(guò)拋物線的焦點(diǎn)F,A點(diǎn)的坐標(biāo)為(8,8),則線段AB的中點(diǎn)到準(zhǔn)線的距離是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
過(guò)拋物線y2=8x的焦點(diǎn)F作傾斜角為135°的直線交拋物線于A、B兩點(diǎn),則弦AB的長(zhǎng)為( )
A.4 B.8
C.12 D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若點(diǎn)P到直線y=-2的距離比它到點(diǎn)A(0,1)的距離大1,則點(diǎn)P的軌跡為( )
A.圓 B.橢圓
C.雙曲線 D.拋物線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
P是橢圓+=1上的任意一點(diǎn),F1、F2是它的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),
則動(dòng)點(diǎn)Q的軌跡方程是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,ABCD-A1B1C1D1是棱長(zhǎng)為6的正方體,E、F分別是棱AB、BC上的動(dòng)點(diǎn),且AE=BF.當(dāng)A1、E、F、C1四點(diǎn)共面時(shí),平面A1DE與平面C1DF所成二面角的余弦值為( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com