【題目】已知數(shù)列的前項(xiàng)和為,且.

(1)證明是等比數(shù)列,并求的通項(xiàng)公式;

(2)求

(3)設(shè),若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1); (2); (3).

【解析】

1)設(shè),將已知條件中的式子進(jìn)行轉(zhuǎn)化,可得,從而證得其為等比數(shù)列,之后利用等比數(shù)列的通項(xiàng)公式求得,進(jìn)而求得;

2)利用錯(cuò)位相減法對(duì)數(shù)列求和,求得;

3)根據(jù)題意求得,將恒成立轉(zhuǎn)化為,利用作差比較法,求得,觀察得出,進(jìn)而求得的范圍.

(1)設(shè),則只需證明為等比數(shù)列即可,

因?yàn)?/span>為常數(shù),

所以數(shù)列是公比為的等比數(shù)列,且首項(xiàng)

,所以.

(2)由(1)知

①-②得,

(3)由(2)得,,

要使得對(duì)恒成立,只需,

因?yàn)?/span>,

所以,當(dāng)時(shí),,即

當(dāng)時(shí),,即,所以,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C+=1ab0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為3

1)求橢圓C的方程;

2)橢圓C上是否存在點(diǎn)P,使得過(guò)點(diǎn)P引圓Ox2+y2=b2的兩條切線PA、PB互相垂直?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)一天中不同時(shí)刻的用電量(萬(wàn)千瓦時(shí))關(guān)于時(shí)間(單位:小時(shí),其中對(duì)應(yīng)凌晨0點(diǎn))的函數(shù)近似滿足 ,如圖是函數(shù)的部分圖象.

(1)求的解析式;

(2)已知該企業(yè)某天前半日能分配到的供電量(萬(wàn)千瓦時(shí))與時(shí)間(小時(shí))的關(guān)系可用線性函數(shù)模型模擬,當(dāng)供電量小于企業(yè)用電量時(shí),企業(yè)必須停產(chǎn).初步預(yù)計(jì)開始停產(chǎn)的臨界時(shí)間在中午11點(diǎn)到12點(diǎn)之間,用二分法估算所在的一個(gè)區(qū)間(區(qū)間長(zhǎng)度精確到15分鐘).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的三角形ABC中,一機(jī)器人從三角形ABC上的每一個(gè)頂點(diǎn)移動(dòng)到另一個(gè)頂點(diǎn),(規(guī)定:每次只能從一個(gè)頂點(diǎn)移動(dòng)到另一個(gè)頂點(diǎn)),而且按逆時(shí)針?lè)较蛞苿?dòng)的概率為順時(shí)針?lè)较蛞苿?dòng)的概率的3,假設(shè)現(xiàn)在機(jī)器人的初始位置為頂點(diǎn)A處,則通過(guò)三次移動(dòng)后返回到A處的概率為________________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)為了解居民喜歡中華傳統(tǒng)文化是否與年齡有關(guān),隨機(jī)調(diào)查了60位居民,相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下表所示,

喜歡

不喜歡

合計(jì)

大于45歲

26

6

32

25歲至45歲

13

15

28

合計(jì)

39

21

60

(Ⅰ)是否有99.5%以上的人把握認(rèn)為喜歡中華傳統(tǒng)文化與年齡有關(guān)?

(Ⅱ)按年齡采用分層抽樣的方法從喜歡中華傳統(tǒng)文化的受調(diào)查居民中隨機(jī)抽取6人作進(jìn)一步了解,若從這6位居民中任選2人,求這2人的年齡均大于45歲的概率.

附:

0.025

0.010

0.005

0,001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從高二年級(jí)學(xué)生中隨機(jī)抽取60名學(xué)生,將期中考試的政治成績(jī)(均為整數(shù))分成六段:后得到如下頻率分布直方圖.

1)根據(jù)頻率分布直方圖,分別求,眾數(shù),中位數(shù)。

2)估計(jì)該校高二年級(jí)學(xué)生期中考試政治成績(jī)的平均分。

3)用分層抽樣的方法在各分?jǐn)?shù)段的學(xué)生中抽取一個(gè)容量為20的樣本,則在分?jǐn)?shù)段抽取的人數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,正確命題的序號(hào)是____________。

①數(shù)列{an}的前n項(xiàng)和,則數(shù)列{ an }是等差數(shù)列。

②若等差數(shù)列{ an }中,已知 ,則

③函數(shù)的最小值為2。

④等差數(shù)列的前n項(xiàng)和為,最大時(shí)13

⑤若數(shù)列{an}是等比數(shù)列,其前n項(xiàng)和為則常數(shù)k的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是中國(guó)古代的數(shù)學(xué)專著,其中的“更相減損術(shù)”可以用來(lái)求兩個(gè)數(shù)的最大公約數(shù),原文是:可半者半之,不可半者,副置分母、子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之. 翻譯為現(xiàn)代的語(yǔ)言如下:如果需要對(duì)分?jǐn)?shù)進(jìn)行約分,那么可以折半的話,就折半(也就是用2來(lái)約分).如果不可以折半的話,那么就比較分母和分子的大小,用大數(shù)減去小數(shù),互相減來(lái)減去,一直到減數(shù)與差相等為止,用這個(gè)相等的數(shù)字來(lái)約分,現(xiàn)給出“更相減損術(shù)”的程序框圖如圖所示,如果輸入的,,則輸出的( )

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C的內(nèi)角對(duì)邊分別為a,b,c,滿足(a+b+c)(a﹣b+c)=ac.
(1)求B.
(2)若sinAsinC= ,求C.

查看答案和解析>>

同步練習(xí)冊(cè)答案