8.已知兩條直線l1:mx+8y+n=0和l2:2x+my-1=0,試分別確定m、n的值,使:
(1)l1與l2相交于點P(3,1);
(2)l1∥l2;
(3)l1⊥l2且l1在y軸上的截距為-1.

分析 (1)由l1與l2相交于點P(3,1),可得$\left\{\begin{array}{l}{3m+8+n=0}\\{6+m-1=0}\end{array}\right.$,解出m,n,即可得出.
(2)由m2-2×8=0,解得m=±4,經(jīng)過檢驗即可得出.
(3)m=0時,兩條直線分別化為:8y+n=0,2x-1=0,此時兩條直線相互垂直;m≠0時,由于兩條直線相互垂直可得:$-\frac{m}{8}×(-\frac{2}{m})$=-1,解出即可判斷出結(jié)論.

解答 解:(1)∵l1與l2相交于點P(3,1),∴$\left\{\begin{array}{l}{3m+8+n=0}\\{6+m-1=0}\end{array}\right.$,解得m=-5,n=7.
(2)由m2-2×8=0,解得m=±4,經(jīng)過檢驗可得:m=4,n≠-2時兩條直線平行;m=-4,n≠2時兩條直線平行.
(3)m=0時,兩條直線分別化為:8y+n=0,2x-1=0,此時兩條直線相互垂直;
m≠0時,由于兩條直線相互垂直可得:$-\frac{m}{8}×(-\frac{2}{m})$=-1,無解.
綜上可得:只有m=0時,兩條直線相互垂直.

點評 本題考查了相互平行與垂直的直線斜率之間的關(guān)系、分類討論方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.自點(-3,3)發(fā)出的光線射到x軸上,被x軸反射,其反射光線L所在直線與圓x2+y2-4x-4y+7=0相切,則反射光線L所在直線方程為4x-3y+3=0或3x-4y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某蛋糕店出售一種蛋糕,這種蛋糕的保質(zhì)期很短,必須當(dāng)天賣掉,否則容易變質(zhì),該蛋糕店每天以每塊16元的成本價格制作這種蛋糕若干塊,然后以每塊26元的價格出售,如果當(dāng)天賣不完,剩下的蛋糕只能以每塊6元低價出售.蛋糕店記錄了100天該種蛋糕的日需求量n(單位:塊,n∈N*)整理得如圖:
(1)若該蛋糕店某一天制作19塊蛋糕,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n的函數(shù)解析式;
(2)若要求出售“出售的蛋糕塊數(shù)不小于n”的頻率不小于0.4,求n的最大值.
(3)若該蛋糕店這100天每天都制作19塊蛋糕,試計算這100天蛋糕店所獲利潤的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)$f(x)=lg(x+1)+\frac{1}{x}$的定義域是(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A,B,C所對的邊分別為a,b,c,且,acosC=(2b-c)cosA
(1)求cosA的值;
(2)若a=6,b+c=8,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)Sn為等差數(shù)列{an}的前n項和,a1=-2,S3=0,則{an}的公差為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知m、n是兩條不同的直線,α、β、γ是三個不同的平面,則下列命題中不正確的序號有( 。
①若α⊥β,α∩β=m,且n⊥m,則n⊥α或n⊥β
②若m不垂直于α,則m不可能垂直于α內(nèi)的無數(shù)條直線
③若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β
④若α⊥β,m∥n,n⊥β,則m∥α
A.①②③④B.C.①④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知兩條不同直線a,b及平面α,則下列命題中真命題是(  )
A.若a∥α,b∥α,則a∥bB.若a∥b,b∥α,則a∥αC.若a⊥α,b⊥α,則a∥bD.若a⊥α,b⊥a,則b⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.將函數(shù)y=cosx的圖象向右移$\frac{π}{3}$個單位,可以得到y(tǒng)=sin(x+$\frac{π}{6}$)的圖象.

查看答案和解析>>

同步練習(xí)冊答案