9.自點(diǎn)(-3,3)發(fā)出的光線射到x軸上,被x軸反射,其反射光線L所在直線與圓x2+y2-4x-4y+7=0相切,則反射光線L所在直線方程為4x-3y+3=0或3x-4y-3=0.

分析 化簡(jiǎn)圓的方程為標(biāo)準(zhǔn)方程,求出關(guān)于x軸對(duì)稱的圓的方程,設(shè)l的斜率為k,利用相切求出k的值即可得反射光線所在的直線方程.

解答 解:如圖示:

根據(jù)對(duì)稱關(guān)系,首先求出點(diǎn)A的對(duì)稱點(diǎn)A′的坐標(biāo)為(-3,-3),
其次設(shè)過(guò)A′的圓C的切線方程為y=k(x+3)-3
根據(jù)d=$\frac{|5k-5|}{\sqrt{{k}^{2}+1}}$=1,即求出圓C的切線的斜率為k=$\frac{4}{3}$或k=$\frac{3}{4}$,
進(jìn)一步求出反射光線所在的直線的方程為:
4x-3y+3=0或3x-4y-3=0,
故答案為:4x-3y+3=0或3x-4y-3=0.

點(diǎn)評(píng) 本題考查點(diǎn)、直線和圓的對(duì)稱問(wèn)題,直線與圓的關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,M為圓x2+y2=$\frac{{a}^{2}}{4}$上的點(diǎn),過(guò)左焦點(diǎn)F1與點(diǎn)M的直線交雙曲線右支于點(diǎn)P,若M為線段PF1的中點(diǎn),當(dāng)△PF1F2為銳角三角形時(shí),雙曲線的離心率范圍為$(\sqrt{2},\frac{\sqrt{10}}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為x軸,拋物線上一點(diǎn)P(3,a)到焦點(diǎn)的距離為5.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)已知直線l過(guò)定點(diǎn)P(-3,1),斜率為k,當(dāng)k為何值時(shí),直線l與拋物線只有一個(gè)公共點(diǎn),并寫(xiě)出相應(yīng)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在區(qū)間[-2,4]上隨機(jī)地取一個(gè)數(shù)x,若x滿足x≤m的概率為$\frac{2}{3}$,則m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=x3-$\frac{9}{2}$x2+6x-a.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若f(x)的圖象與x軸有三個(gè)交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.內(nèi)接于半徑為R的半圓的周長(zhǎng)最大的矩形的寬和長(zhǎng)分別為$\frac{\sqrt{5}}{5}$R、$\frac{4\sqrt{5}}{5}$R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)函數(shù)y=f(x)在x=x0處可導(dǎo),且$\underset{lim}{△x→0}$$\frac{f({x}_{0}-3△x)-f({x}_{0})}{2△x}$=1,則f′(x0)等于( 。
A.-$\frac{2}{3}$B.-$\frac{3}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.定義:若函數(shù)y=f(x)的圖象上存在兩個(gè)不同的點(diǎn)A,B,使得函數(shù)f(x)的圖象上在這兩點(diǎn)處的切線關(guān)于垂直于x軸的某條直線對(duì)稱,則稱函數(shù)y=f(x)為D函數(shù).下列選項(xiàng)是D函數(shù)的為(  )
A.y=x3B.y=cosxC.y=lnxD.y=ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知兩條直線l1:mx+8y+n=0和l2:2x+my-1=0,試分別確定m、n的值,使:
(1)l1與l2相交于點(diǎn)P(3,1);
(2)l1∥l2;
(3)l1⊥l2且l1在y軸上的截距為-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案