已知E、F、G、H分別是空間四邊形四條邊AB、BC、CD、DA的中點(diǎn),BD⊥AC.求證:四邊形EFGH是矩形.
考點(diǎn):平面的基本性質(zhì)及推論
專題:空間位置關(guān)系與距離
分析:利用三角形的中位線定理、平行四邊形的判定定理可得:四邊形EFGH是平行四邊形.由EH∥BD,EF∥AC,BD⊥AC,可得EF⊥EH.即可證明平行四邊形EFGH是矩形.
解答: 證明:∵E、F分別是空間四邊形四條邊AB、BC的中點(diǎn),
∴EF∥AC,EF=
1
2
AC.
同理可得GH∥AC.∴EF
.
1
2
GH.
∴四邊形EFGH是平行四邊形.
可得EH∥BD,又BD⊥AC,
∴EF⊥EH.
∴平行四邊形EFGH是矩形.
點(diǎn)評(píng):本題考查了三角形的中位線定理、平行四邊形的判定、矩形的判定定理、異面直線所成的角,考查了推理能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x∈R|0<x<1},B={x∈R|(2x-1)(x+1)≤0},則(∁RA)∩B(  )
A、[0,
1
2
]
B、[-1,0]
C、[
1
2
,1]
D、(-∞,-1]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,|AC|2=
BC
AC
BA
=(-2,-3),
BC
=(m,1),則m的值等于( 。
A、8
B、-8
C、
2
3
D、-
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ADF-BCE中,除DF、CE外,其他的棱長(zhǎng)均為2,AB⊥AF,平面ABCD⊥平面ABEF,M,N分別是AC,BF上的中點(diǎn).
(Ⅰ)求證:MN∥平面ADF;
(Ⅱ)求直線MN與平面ABCD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=exu(x),
(Ⅰ)若u(x)=x2-
5
2
x+2,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若u(x)=x2+ax-3-2a,設(shè)函數(shù)g(x)=(a2+14)ex+4.當(dāng)a>0時(shí),分別求出f(x)和g(x)在x∈[0,4]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(sinx,
3
cosx),
b
=(cosx,cosx),若函數(shù)f(x)=
a
b

(1)若x∈[0,
π
2
],求f(x)得最小值.
(2)求函數(shù)f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線l1,l2的傾斜角為直線y=
3
x+1的傾斜角的一半,且滿足下列條件的直線l1,l2的方程;
(1)直線l1經(jīng)過(guò)點(diǎn)(-4,1); 
(2)直線l2在y軸上的截距為-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-tx-1(e為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)設(shè)不等式f(x)>-2tx-1的解集為M,且集合{x|0<x≤2}⊆M,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的方程:x4-2ax2-x+a2-a=0(-0.25≤a<0.75).

查看答案和解析>>

同步練習(xí)冊(cè)答案