分析 原不等式等價(jià)于x(x+1)2(x-2)>0,當(dāng)x=-1時(shí),不等式不成立,當(dāng)x≠-1時(shí),不等式等價(jià)于x(x-2)>0,解得x<0或x>2且x≠-1,問(wèn)題得以解決.
解答 解:x2(x2+2x+1)>2x(x2+2x+1)等價(jià)于x(x+1)2(x-2)>0,
當(dāng)x=-1時(shí),不等式不成立,
當(dāng)x≠-1時(shí),不等式等價(jià)于x(x-2)>0,解得x<0或x>2且x≠-1,
故不等式的解集為(-∞,-1)∪(-1,0)∪(2,+∞),
故答案為:(-∞,-1)∪(-1,0)∪(2,+∞).
點(diǎn)評(píng) 本題考查了高次不等式的解法,分類討論是關(guān)鍵,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\left\{{\begin{array}{l}{x=\sqrt{t}}\\{y=2\sqrt{t}}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{x=2t+1}\\{y=4t+1}\end{array}}\right.$ | C. | $\left\{{\begin{array}{l}{x=cosθ}\\{y=2sinθ}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{x=tanθ}\\{y=2tanθ}\end{array}}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若a>b,c=0,則ac>bc | B. | 若ac2>bc2,則a>b | ||
C. | 若a>b,則$\frac{1}{a}$>$\frac{1}$ | D. | 若a>b,則ac2>bc2 | ||
E. | 若a>b,則ac2>bc2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com