14.已知點(diǎn)M(5,-6)和向量$\overrightarrow{a}$=(1,-2),若$\overrightarrow{NM}$=3$\overrightarrow{a}$,則點(diǎn)N的坐標(biāo)為(  )
A.(2,0)B.(-3,6)C.(6,2)D.(-2,0)

分析 設(shè)點(diǎn)N的坐標(biāo)為(x,y),根據(jù)平面向量的坐標(biāo)表示,利用向量相等列方程組,即可求出x、y的值.

解答 解:設(shè)點(diǎn)N的坐標(biāo)為(x,y),
由點(diǎn)M(5,-6)得$\overrightarrow{NM}$=(5-x,-6-y),
又向量$\overrightarrow{a}$=(1,-2),且$\overrightarrow{NM}$=3$\overrightarrow{a}$,
所以$\left\{\begin{array}{l}{5-x=3}\\{-6-y=-6}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$;
所以點(diǎn)N的坐標(biāo)為(2,0).
故選:A.

點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)表示與向量相等的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)f(x)=-2sin(2x-$\frac{π}{4}$)+1(x∈[0,$\frac{π}{2}$])的最大值是$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在四棱錐S-ABCD中,底面ABCD為正方形,△SAD是正三角形,P,Q分別是棱SC,AB的中點(diǎn),且平面SAD⊥平面ABCD.
(1)求證:PQ∥平面SAD;
(2)求證:SQ⊥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=x2+2ax+3在(-∞,1]上是減函數(shù),當(dāng)x∈[a+1,1]時(shí),f(x)的最大值與最小值之差為g(a),則g(a)的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某食品廠為了檢查甲乙兩條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取40件產(chǎn)品作為樣本稱出它們的重量(單位:克),重量值落在(495,510]的產(chǎn)品為合格品,否則為不合格品.圖1是甲流水線樣本的頻率分布直方圖,表1是乙流水線樣本頻數(shù)分布表.
表1:(乙流水線樣本頻數(shù)分布表) 
產(chǎn)品重量(克)頻數(shù)
(490,495]6
(495,500]8
(500,505]14
(505,510]8
(510,515]4
(Ⅰ)若以頻率作為概率,試估計(jì)從甲流水線上任取5件產(chǎn)品,求其中合格品的件數(shù)X的數(shù)學(xué)期望; (Ⅱ)從乙流水線樣本的不合格品中任意取x2+y2=2件,求其中超過(guò)合格品重量的件數(shù)l:y=kx-2的分布列;(Ⅲ)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面$\frac{π}{2}$列聯(lián)表,并回答有多大的把握認(rèn)為“產(chǎn)品的包裝質(zhì)量與兩條資動(dòng)包裝流水線的選擇有關(guān)”.
甲流水線乙流水線合計(jì)
合格品a=b=
不合格品c=d=
合 計(jì)n=
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:下面的臨界值表供參考:
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.B是單位圓O上的點(diǎn),點(diǎn)A(1,0),點(diǎn)B在第二象限.記∠AOB=θ且sinθ=$\frac{4}{5}$.
(1)求B點(diǎn)坐標(biāo);
(2)求$\frac{sin(π+θ)+2sin(\frac{π}{2}-θ)}{2cos(π-θ)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)$f(x)={log_2}x,x∈[\frac{1}{2},4]$,在區(qū)間$[\frac{1}{2},4]$上任取一點(diǎn)x0,則f(x0)≤0的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)a>0,b>0,若a+b=1,則$\frac{1}{a}+\frac{1}$的最小值是( 。
A.8B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.記區(qū)間(x1,x2)的長(zhǎng)度為L(zhǎng)=x2-x1,已知函數(shù)$f(x)=\frac{1}{3}a{x^2}+\frac{1}{2}b{x^2}+cx+d$(a>b>c),其圖象在點(diǎn)(1,f(1))處的切線斜率為0,則函數(shù)f(x)單調(diào)遞減區(qū)間的長(zhǎng)度L的取值范圍為( 。
A.$({1,\frac{3}{2}})$B.$({\frac{3}{2},3})$C.(1,3)D.(2,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案