分析 (1)由f(x)≤|f($\frac{π}{6}$)|對(duì)x∈R恒成立,結(jié)合函數(shù)最值的定義,求得f($\frac{π}{6}$)等于函數(shù)的最大值或最小值,由此可以確定滿足條件的初相角φ的值,結(jié)合f($\frac{π}{2}$)>f(π),求出φ的值,再根據(jù)正弦函數(shù)求出單調(diào)區(qū)間;
(2)根據(jù)題意,令f(x)=0求出方程的解即可.
解答 解:(1)若f(x)≤|f($\frac{π}{6}$)|對(duì)x∈R恒成立,
則f($\frac{π}{6}$)等于函數(shù)的最大值或最小值,
即2×$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,
則φ=kπ+$\frac{π}{6}$,k∈Z,
又f($\frac{π}{2}$)>f(π),即sinφ<0,
令k=-1,此時(shí)φ=-$\frac{5π}{6}$,滿足條件sinφ<0,
令2x-$\frac{5π}{6}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z,
解得x∈[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$].
則f(x)的單調(diào)遞增區(qū)間是[kπ+$\frac{π}{6}$,kπ+$\frac{3π}{3}$].
(2)由(1)知,函數(shù)f(x)=sin(2x-$\frac{5π}{6}$),
令f(x)=0,得2x-$\frac{5π}{6}$=kπ,k∈Z,
解得x=$\frac{kπ}{2}$+$\frac{5π}{12}$,k∈Z;
∴函數(shù)f(x)的零點(diǎn)為x=$\frac{kπ}{2}$+$\frac{5π}{12}$,k∈Z.
點(diǎn)評(píng) 本題考查了函數(shù)y=Asin(ωx+φ)的圖象變換、三角函數(shù)的單調(diào)性,其中解答本題的關(guān)鍵是根據(jù)已知條件求出滿足條件的初相角φ的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 36 | B. | 32 | C. | 16 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | (-1,-2) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ±3 | B. | ±1 | C. | ±1或±3 | D. | 1或3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com