【題目】某鄉(xiāng)鎮(zhèn)響應“綠水青山就是金山銀山”的號召,因地制宜的將該鎮(zhèn)打造成“生態(tài)水果特色小鎮(zhèn)”.經(jīng)調(diào)研發(fā)現(xiàn):某珍稀水果樹的單株產(chǎn)量(單位:千克)與施用肥料(單位:千克)滿足如下關(guān)系:,肥料成本投入為元,其它成本投入(如培育管理、施肥等人工費)元.已知這種水果的市場售價大約為15元/千克,且銷路暢通供不應求.記該水果樹的單株利潤為(單位:元).

(Ⅰ)求的函數(shù)關(guān)系式;

(Ⅱ)當施用肥料為多少千克時,該水果樹的單株利潤最大?最大利潤是多少?

【答案】(Ⅰ)(Ⅱ)當施用肥料為4千克時,種植該果樹獲得的最大利潤是480元.

【解析】

1)根據(jù)題意可得fx)=15wx)﹣30x,則化為分段函數(shù)即可,(2)根據(jù)分段函數(shù)的解析式即可求出最大利潤.

(Ⅰ)由已知

(Ⅱ)由(Ⅰ)得

時,;

時,

當且僅當時,即時等號成立.

因為,所以當時,

∴當施用肥料為4千克時,種植該果樹獲得的最大利潤是480元.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足.

(I)求證:是等比數(shù)列;

(II)求證:不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解放軍某部在實兵演練對抗比賽中,紅、藍兩個小組均派6人參加實彈射擊,其所得成績的莖葉圖如圖所示.
(1)根據(jù)射擊數(shù)據(jù),計算紅、藍兩個小組射擊成績的均值與方差,并說明紅軍還是藍軍的成績相對比較穩(wěn)定;
(2)若從藍軍6名士兵中隨機抽取兩人,求所抽取的兩人的成績之差不超過2的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學在校就餐的高一年級學生有440名,高二年級學生有460名,高三年級學生有500名;為了解學校食堂的服務質(zhì)量情況,用分層抽樣的方法從中抽取70名學生進行抽樣調(diào)查,把學生對食堂的“服務滿意度”與“價格滿意度”都分為五個等級:1級(很不滿意);2級(不滿意);3級(一般);4級(滿意);5級(很滿意),其統(tǒng)計結(jié)果如下表(服務滿意度為x,價格滿意度為y).

y
人數(shù)
x

價格滿意度

1

2

3

4

5



滿

1

1

1

2

2

0

2

2

1

3

4

1

3

3

7

8

8

4

4

1

4

6

4

1

5

0

1

2

3

1

(1)求高二年級共抽取學生人數(shù);
(2)求“服務滿意度”為3時的5個“價格滿意度”數(shù)據(jù)的方差;
(3)為提高食堂服務質(zhì)量,現(xiàn)從x<3且2≤y<4的所有學生中隨機抽取兩人征求意見,求至少有一人的“服務滿意度”為1的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3ax(a∈R)
(1)當a=1時,求f(x)的極小值;
(2)若直線x+y+m=0對任意的m∈R都不是曲線y=f(x)的切線,求a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】養(yǎng)正中學新校區(qū)內(nèi)有一塊以O為圓心,R(單位:米)為半徑的半圓形荒地(如圖),?倓仗幱媱潓ζ溟_發(fā)利用,其中弓形BCD區(qū)域(陰影部分)用于種植觀賞植物,△OBD區(qū)域用于種植花卉出售,其余區(qū)域用于種植草皮出售。已知種植觀賞植物的成本是每平方米20元,種植花卉的利潤是每平方米80元,種植草皮的利潤是每平方米30元。

1)設(shè)(單位:弧度),用表示弓形BCD的面積

2)如果該?倓仗幯埬阋(guī)劃這塊土地。如何設(shè)計的大小才能使總利潤最大?并求出該最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若曲線處的導數(shù)等于,求實數(shù)

(Ⅱ),求的極值;

(Ⅲ)當時,上的最大值為,求在該區(qū)間上的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,半圓O的直徑為2A為直徑延長線上一點,OA=2B為半圓上任意一點,以線段AB為腰作等腰直角ABCC、O兩點在直線AB的兩側(cè)),當∠AOB變化時,OCm恒成立,則m的最小值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等比數(shù)列{an}的各項均為正數(shù),且a2=2,a4=
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2an , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案