11.f'(x)是函數(shù)f(x)的導函數(shù),f''(x)是函數(shù)f'(x)的導函數(shù).對于三次函數(shù)y=f(x),若方程f''(x0)=0,則點($\begin{array}{l}{{x_0},f({x_0})}\end{array}$)即為函數(shù)y=f(x)圖象的對稱中心.設函數(shù)f(x)=$\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$,則f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+f($\frac{3}{2017}$)+…+f($\frac{2016}{2017}$)=(  )
A.1008B.2014C.2015D.2016

分析 根據(jù)函數(shù)f(x)的解析式求出f′(x)和f″(x),令f″(x)=0,求得x的值,由此求得函數(shù)f(x)的對稱中心,得到f(1-x)+f(x)=2,即可得出.

解答 解:依題意,得:f′(x)=x2-x+3,∴f″(x)=2x-1.
由f″(x)=0,即2x-1=0.
∴x=$\frac{1}{2}$,
∴f($\frac{1}{2}$)=1,
∴f(x)的對稱中心為($\frac{1}{2}$,1)
∴f(1-x)+f(x)=2,
∴f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+f($\frac{3}{2017}$)+…+f($\frac{2016}{2017}$)=2016.
故選:D.

點評 本題主要考查函數(shù)與導數(shù)等知識,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查化簡計算能力,函數(shù)的對稱性的應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3,a∈R.
(1)解關于x的不等式g(x)>0;
(2)若對任意x∈(0,+∞),不等式f(x)≥$\frac{1}{2}$g(x)恒成立,求a的取值范圍;
(3)證明:對任意x∈(0,+∞),lnx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在10件同類型的產(chǎn)品中有2件次品,現(xiàn)抽取3件進行檢驗,每次抽取1件,并且取出后不再放回,則取出的3件產(chǎn)品中至少有1件次品的概率為( 。
A.$\frac{7}{10}$B.$\frac{3}{5}$C.$\frac{8}{15}$D.$\frac{7}{15}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知具有線性相關的兩個變量x,y之間的一組數(shù)據(jù)如下表:
 x 4 2 1-1-2
 y 24 36 40 49 59
且回歸方程$\widehat{y}$=-5.5x+$\widehat{a}$,則當x=6時,y的預測值為(  )
A.11B.13C.14D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知定義在R上的函數(shù)f(x)=$\frac{2}{1+{2}^{x}}$-1.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷并證明f(x)的單調(diào)性;
(3)若f(2-t2)+f(t)<0,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.某射擊選手每次射擊擊中目標的概率是0.8,如果他連續(xù)射擊4次,則這名射手恰有3次擊中目標的概率是(  )
A.C${\;}_{4}^{3}$0.83×0.2B.C${\;}_{4}^{3}$0.83C.0.83×0.2D.C${\;}_{4}^{3}$0.8×0.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.對于問題:“已知關于x的不等式ax2+bx+c>0的解集為(-1,2),解關于x的不等式ax2-bx+c>0”,給出如下一種解法:
解:由ax2+bx+c>0的解集為(-1,2),得a(-x)2+b(-x)+c>0的解集為(-2,1),
即關于x的不等式ax2-bx+c>0的解集為(-2,1).
參考上述解法,若關于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集為(-1,-$\frac{1}{2}$)∪($\frac{1}{3}$,1),則關于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集為(-3,-1)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.圓C1:(x+2)2+(y+3)2=25與C2:(x-2)2+(y-3)2=4的位置關系是(  )
A.內(nèi)切B.相交C.相離D.外切

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若x∈R,則“x=-1”是“x3=-1”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

同步練習冊答案