11.直線$y=-\sqrt{3}x+1$的傾斜角是( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 求出直線的斜率,即可得到直線的傾斜角.

解答 解:直線$y=-\sqrt{3}x+1$的斜率為-$\sqrt{3}$,傾斜角是$\frac{2π}{3}$,
故選:C.

點評 本題考查直線的有關(guān)概念,直線的斜率與直線的傾斜角的關(guān)系,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知曲線C1和C2的極坐標方程分別為ρ=6$\sqrt{2}$cos(θ-$\frac{π}{4}$)和ρcos(θ+$\frac{π}{4}$)=4$\sqrt{2}$,長度為1的線段AB的兩端點在曲線C2上,點P在曲線C1上,求△PAB面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在平面直角坐標系xoy中,已知曲線C1:$\left\{\begin{array}{l}{x=2t+2}\\{y=1-t}\end{array}\right.$(t為參數(shù))與曲線C2:$\left\{\begin{array}{l}{x=asinθ}\\{y=3cosθ}\end{array}\right.$.(θ為參數(shù),且a>0)有一個公共點在x軸上,則實數(shù)a=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,已知角A、B、C的對邊分別為a,b,c,且tanAtanC=$\frac{1}{2cosAcosC}$+1.
(1)求B的大;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{1}{2}$b2,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知a,b為正實數(shù),且a+b=2,則$\frac{{a}^{2}+2}{a}$+$\frac{^{2}}{b+1}$-2的最小值為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若集合A={x|x2-x-6≤0},B={x|x>1},則A∪B={x|x≥-2},(∁RA)∩B={x|x>3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知實數(shù)c>0,c≠1,設(shè)有兩個命題:命題p:函數(shù)y=cx是R上的單調(diào)減函數(shù);命題q:對于?x∈R,不等式x2+x+$\frac{c}{2}$>0恒成立.若命題p∨q為真,p∧q為假,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)y=($\frac{1}{2}$)x-log2x的零點為x0,則(  )
A.x0<1B.x0>3C.2<x0<3D.1<x0<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在平面直角坐標系xOy中,已知圓C:x2+y2-6x+5=0,點A,B在圓上,且AB=2$\sqrt{3}$則|$\overrightarrow{OA}+\overrightarrow{OB}$|的取值范圍是[4,8].

查看答案和解析>>

同步練習冊答案