2.在平面直角坐標(biāo)系xoy中,已知曲線C1:$\left\{\begin{array}{l}{x=2t+2}\\{y=1-t}\end{array}\right.$(t為參數(shù))與曲線C2:$\left\{\begin{array}{l}{x=asinθ}\\{y=3cosθ}\end{array}\right.$.(θ為參數(shù),且a>0)有一個(gè)公共點(diǎn)在x軸上,則實(shí)數(shù)a=4.

分析 求出曲線C1的普通方程為x+2y-4=0,曲線C2的直角坐標(biāo)方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1,由曲線C1與曲線C2有一個(gè)公共點(diǎn)在x軸上,得在x+2y-4=0上,y=0時(shí),x=4,從而曲線C2:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1過點(diǎn)(4,0),由此能求出結(jié)果.

解答 解:∵曲線C1:$\left\{\begin{array}{l}{x=2t+2}\\{y=1-t}\end{array}\right.$(t為參數(shù))
∴曲線C1的普通方程為x+2y-4=0,
∵曲線C2:$\left\{\begin{array}{l}{x=asinθ}\\{y=3cosθ}\end{array}\right.$.(θ為參數(shù),且a>0),
∴曲線C2的直角坐標(biāo)方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1,
聯(lián)立$\left\{\begin{array}{l}{x+2y-4=0}\\{\frac{{x}^{2}}{a}+\frac{{y}^{2}}{9}=1}\end{array}\right.$,
∵曲線C1:$\left\{\begin{array}{l}{x=2t+2}\\{y=1-t}\end{array}\right.$(t為參數(shù))與曲線C2:$\left\{\begin{array}{l}{x=asinθ}\\{y=3cosθ}\end{array}\right.$.(θ為參數(shù),且a>0)有一個(gè)公共點(diǎn)在x軸上,
在x+2y-4=0上,y=0時(shí),x=4,
∴曲線C2:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1過點(diǎn)(4,0),
∵a>0,∴a=4.
故答案為:4.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意參數(shù)方程、普通方程、直角坐標(biāo)方程、極坐標(biāo)方程的互化公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給出函數(shù)①y=x3,②y=x4+1,③y=|x|,④y=$\sqrt{x}$,其中在x=0處取得極值的函數(shù)是②③(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)直線l與拋物線y2=4x相交于A、B兩點(diǎn),與圓(x-5)2+y2=r2(r>0)相切于點(diǎn)M,且M為線段AB的中點(diǎn),若這樣的直線l恰有4條.則r的取值范圍是2<r<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)集A={a1,a2,a3,a4,a5}(0≤a1<a2<a3<a4<a5)具有性質(zhì)p:對(duì)任意i,j∈Z,其中1≤i≤j≤5,aj+ai與aj-ai兩數(shù)中至少有一個(gè)屬于A,若a5=60,則a1=0,a3=30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知i是虛數(shù)單位,集合A={z|z=in,n∈N*},則A的子集個(gè)數(shù)有( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知曲線C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$(t為參數(shù)),曲線C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)),直線C3:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$(t為參數(shù)).
(1)將C1,C2,C3的方程化為普通方程,并說明它們分別代表什么曲線;
(2)Q為曲線C2上的動(dòng)點(diǎn),求Q到直線C3距離的最小值和最大值;
(3)若曲線C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為t=$\frac{π}{2}$,Q為曲線C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3距離的最小值;
(4)已知點(diǎn)P(x,y)是C1上的動(dòng)點(diǎn),求2x+y的取值范圍;
(5)若x+y+a≥0恒成立,(x,y)在曲線C1上,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)是定義在(0,+∞)上的函數(shù),且對(duì)任意正數(shù)x,y都有f(xy)=f(x)+f(y),且當(dāng)x>1時(shí),f(x)>0,f(3)=1.
(Ⅰ)集合A={x|f(x)>f(x-1)+2},B={x|f($\frac{(a+1)x-1}{x+1}$)>0},且滿足A∩B=∅,求正實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)a<b,比較f($\frac{{e}^{a}+{e}^}{2}$)與f($\frac{{e}^-{e}^{a}}{b-a}$)的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線$y=-\sqrt{3}x+1$的傾斜角是( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值.即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35微克/立方米--75微克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo).某市環(huán)保局從市區(qū)今年9月每天的PM2.5監(jiān)測數(shù)據(jù)中,按系統(tǒng)抽樣方法抽取了某6天的數(shù)據(jù)作為樣本,其監(jiān)測值如莖葉圖所示.
(l)根據(jù)樣本數(shù)據(jù)估計(jì)今年9月份該市區(qū)每天PM2.5的平均值和方差;
(2)從所抽樣的6天中任意抽取三天,記ξ表示抽取的三天中空氣質(zhì)量為二級(jí)的天數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案