分析 求出曲線C1的普通方程為x+2y-4=0,曲線C2的直角坐標(biāo)方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1,由曲線C1與曲線C2有一個(gè)公共點(diǎn)在x軸上,得在x+2y-4=0上,y=0時(shí),x=4,從而曲線C2:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1過點(diǎn)(4,0),由此能求出結(jié)果.
解答 解:∵曲線C1:$\left\{\begin{array}{l}{x=2t+2}\\{y=1-t}\end{array}\right.$(t為參數(shù))
∴曲線C1的普通方程為x+2y-4=0,
∵曲線C2:$\left\{\begin{array}{l}{x=asinθ}\\{y=3cosθ}\end{array}\right.$.(θ為參數(shù),且a>0),
∴曲線C2的直角坐標(biāo)方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1,
聯(lián)立$\left\{\begin{array}{l}{x+2y-4=0}\\{\frac{{x}^{2}}{a}+\frac{{y}^{2}}{9}=1}\end{array}\right.$,
∵曲線C1:$\left\{\begin{array}{l}{x=2t+2}\\{y=1-t}\end{array}\right.$(t為參數(shù))與曲線C2:$\left\{\begin{array}{l}{x=asinθ}\\{y=3cosθ}\end{array}\right.$.(θ為參數(shù),且a>0)有一個(gè)公共點(diǎn)在x軸上,
在x+2y-4=0上,y=0時(shí),x=4,
∴曲線C2:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1過點(diǎn)(4,0),
∵a>0,∴a=4.
故答案為:4.
點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意參數(shù)方程、普通方程、直角坐標(biāo)方程、極坐標(biāo)方程的互化公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 16 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com