10.某醫(yī)療研究所為了檢驗某種血清預防感冒的作用,把500名使用血清的人與另外500名未使用血清的人一年中的感冒記錄作比較,提出假設H0:“這種血清不能起到預防感冒的作用”,利用2×2列聯(lián)表計算得K2≈3.918,經(jīng)查臨界值表知P(K2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號是①.
①在犯錯誤的概率不超過5%的前提下認為“這種血清能起到預防感冒的作用”;
②若某人未使用該血清,那么他在一年中有95%的可能性得感冒;
③這種血清預防感冒的有效率為95%;
④這種血清預防感冒的有效率為5%.

分析 獨立性檢驗采用的原理是:在一個已知假設下,如果一個與該假設矛盾的小概率事件發(fā)生,就推斷這個假設不成立.通過計算Χ2的值,對照統(tǒng)計量與臨界值可得結(jié)論.

解答 解:查對臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認為“這種血清能起到預防感冒的作用”
95%僅是指“血清與預防感冒”可信程度,但也有“在100個使用血清的人中一個患感冒的人也沒有”的可能.
故答案為:①.

點評 獨立性檢驗中研究兩個量是否有關,這是一種統(tǒng)計關系,不能認為是因果關系.利用獨立性檢驗不僅能考查兩個變量是否有關系,而且能較精確地給出這種判斷的可靠性程度.因此,在生物統(tǒng)計、醫(yī)學統(tǒng)計、處理社會調(diào)查問題數(shù)據(jù)等方面都有廣泛的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.參數(shù)方程$\left\{\begin{array}{l}{x=2sinθ}\\{y=2cosθ}\end{array}\right.$,所表示的曲線為( 。
A.直線B.C.橢圓D.雙曲線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知向量$\overrightarrow a$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}}$),$\overrightarrow b$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}}$),且x∈[0,$\frac{π}{2}}$].若f(x)=$\overrightarrow a$•$\overrightarrow b$-2λ|${\overrightarrow a$+$\overrightarrow b}$|的最小值是-$\frac{3}{2}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在△ABC中,a,b,c分別為角A,B,C所對的邊,若(a+b)2-c2=4,且C=60°,則ab的值為( 。
A.$\frac{4}{3}$B.1+$\sqrt{3}$C.1D.$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.數(shù)列{an}滿足${a_n}=\frac{2}{{n({n+1})}}$,若前n項和${S_n}>\frac{5}{3}$,則n的最小值是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,ABCD為直角梯形,∠C=∠CDA=90°,AD=2BC=2CD=2,P為平面ABCD外一點,且PB⊥BD.
(1)求證:PA⊥BD;
(2)若直線l過點P,且直線l∥直線BC,試在直線l上找一點E,使得直線PC∥平面EBD;
(3)若PC⊥CD,PB=4,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設集合A={x|x=π+$\frac{2kπ}{3}$,k∈z},B={x|x=kπ+$\frac{π}{3}$,k∈z},C={x|x=kπ+$\frac{2π}{3}$,k∈z},則A∩(B∪C)=(  )
A.$\left\{{x|x=kπ+\frac{π}{3},k∈z}\right\}$B.$\left\{{x|x=kπ-\frac{π}{3},k∈z}\right\}$C.$\left\{{x|x=2kπ±\frac{π}{3},k∈z}\right\}$D.$\left\{{x|x=kπ±\frac{π}{3},k∈z}\right\}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.計算是積分${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx=π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.(6-2i)-(3i+1)=5-5i.

查看答案和解析>>

同步練習冊答案