15.已知$(\sqrt{a}+\frac{1}{a})^{n}$(n∈N*)的展開式中含a2的項為第3項,則n的值為10.

分析 根據(jù)二項展開式的通項公式求出第三項,令該項a的冪指數(shù)等于2,求出n的值.

解答 解:∵已知$(\sqrt{a}+\frac{1}{a})^{n}$(n∈N*)的展開式中含a2的項為第3項,
又第三項為T3=${C}_{n}^{2}$•${a}^{\frac{n-6}{2}}$,∴$\frac{n-6}{2}$=2,∴n=10,
故答案為:10.

點評 本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,求展開式中某項的系數(shù),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)y=acos(2x+$\frac{π}{3}$)+3,x∈R的最大值為4,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)的定義域為(-∞,+∞),如果,f(x+2016)=$\left\{\begin{array}{l}\sqrt{2}sinx,x≥0\\ lg(-x),x<0\end{array}\right.$,那么$f(2016+\frac{π}{4})•f(-7984)$=( 。
A.2016B.$\frac{1}{4}$C.4D.$\frac{1}{2016}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點為A,P是橢圓C上一點,O為坐標原點.已知∠POA=60°,且OP⊥AP,則橢圓C的離心率為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某校高三期中考試后,數(shù)學教師對本次全部數(shù)學成績按1:20進行分層抽樣,隨機抽取了20名學生的成績?yōu)闃颖荆煽冇们o葉圖記錄如圖所示,但部分數(shù)據(jù)不小心丟失,同時得到如表所示的頻率分布表:
分數(shù)段(分)[50,70)[70,90)[90,110)[110,130)[130,150)總計
頻數(shù)b
頻率a0.25
(Ⅰ)求表中a,b的值及成績在[90,110)范圍內(nèi)的個體數(shù);
(Ⅱ)從樣本中成績在[100,130)內(nèi)的個體中隨機抽取4個個體,設(shè)其中成績在[100,110)內(nèi)的個體數(shù)為X,求X的分布列及數(shù)學期望E(X);
(Ⅲ)若把樣本各分數(shù)段的頻率看作總體相應(yīng)各分數(shù)段的概率,現(xiàn)從全校高三期中考試數(shù)學成績中隨機抽取3個,求其中恰好有1個成績及格的概率(成績在[90,150)內(nèi)為及格).
附注:假定逐次抽取,且各次抽取互相獨立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{4}+{y}^{2}$=1的兩個焦點,A,B分別是該橢圓的左頂點和上頂點,點P在線段AB上,則$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$的最小值為-$\frac{11}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=|x-a|-|2x-1|.
(1)當a=2時,求f(x)+3≥0的解集;
(2)當x∈[1,3]時,f(x)≤3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知條件p:k=$\sqrt{3}$;條件q:直線y=kx+2與圓x2+y2=1相切,則¬p是¬q的( 。
A.充分必要條件B.必要不充分條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=4cosxsin(x-$\frac{π}{6}}$),x∈R.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,BC=4,sinC=2sinB,若f(x)的最大值為f( A),求△ABC的面積.

查看答案和解析>>

同步練習冊答案