5.已知函數(shù)f(x)=4cosxsin(x-$\frac{π}{6}}$),x∈R.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,BC=4,sinC=2sinB,若f(x)的最大值為f( A),求△ABC的面積.

分析 (I)利用三角函數(shù)恒等變換的應(yīng)用化簡函數(shù)解析式可得f(x)=2sin(2x-$\frac{π}{6}$)-1,利用周期公式即可計(jì)算得解.
(II)由正弦定理可得c=2b,由題意,$f(A)=2sin(2A-\frac{π}{6})-1$是f(x)的最大值,結(jié)合范圍$2A-\frac{π}{6}∈(-\frac{π}{6},\frac{11π}{6})$,可求$A=\frac{π}{3}$,由余弦定理得b2的值,利用三角形面積公式即可計(jì)算得解.

解答 (本題滿分為12分)
解:$f(x)=4cosx(sinxcos\frac{π}{6}-cosxsin\frac{π}{6})$=$2\sqrt{3}cosxsinx-2{cos^2}x=\sqrt{3}sin2x-cos2x-1=2sin(2x-\frac{π}{6})-1$.…(4分)
(I)  $T=\frac{2π}{2}=π$.…(6分)
(II)∵A,B,C為△ABC的內(nèi)角,且sinC=2sinB,
∴c=2b,
又∵$f(A)=2sin(2A-\frac{π}{6})-1$是f(x)的最大值,$2A-\frac{π}{6}∈(-\frac{π}{6},\frac{11π}{6})$,
∴$2A-\frac{π}{6}=\frac{π}{2}$,∴$A=\frac{π}{3}$.…(9分)
在△ABC中,由余弦定理得${b^2}+4{b^2}-4{b^2}cos\frac{π}{3}=16$,
∴${b^2}=\frac{16}{3}$,
∴${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{{\sqrt{3}}}{2}{b^2}=\frac{{8\sqrt{3}}}{3}$.…(12分)

點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,周期公式,正弦定理,余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知$(\sqrt{a}+\frac{1}{a})^{n}$(n∈N*)的展開式中含a2的項(xiàng)為第3項(xiàng),則n的值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y≥2}\\{x+2y≥3}\\{x≥0}\\{y≥0}\end{array}\right.$,則x+3y的最小值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-3≤0}\\{y≥1}\end{array}\right.$若目標(biāo)函數(shù)z=2x+y的最小值為a,最大值為b,則函數(shù)y=x-$\frac{4}{x}$在[a,b]上的值域?yàn)椋ā 。?table class="qanwser">A.(-∞,3)B.[3,$\frac{21}{5}$].C.[-3,3]D.[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a>0,b>0,$a+b=\frac{1}{a}+\frac{1}$,則$\frac{1}{a}+\frac{2}$的最小值為( 。
A.4B.$2\sqrt{2}$C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=2sin(4x+φ)(φ<0)的圖象關(guān)于直線x=$\frac{π}{24}$對(duì)稱,則φ的最大值為( 。
A.-$\frac{5π}{3}$B.-$\frac{2π}{3}$C.-$\frac{π}{6}$D.-$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$cos2α=\frac{3}{7}$且cosα<0,tanα<0,則sinα等于( 。
A.$-\frac{{\sqrt{14}}}{7}$B.$\frac{{\sqrt{14}}}{7}$C.$-\frac{{2\sqrt{7}}}{7}$D.$\frac{{2\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,a2+b2=6abcosC,且sin2C=2sinAsinB.
(Ⅰ)求角C的值;
(Ⅱ)若點(diǎn)M是△ABC中角C的外角內(nèi)的一點(diǎn),且CM=2,過點(diǎn)M作MF⊥BC,ME⊥AC,垂足分別為F,E,求MF+ME的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在1到6這6個(gè)整數(shù)中,任取兩個(gè)不同的數(shù)相加,使其和大于6,共有幾種取法?

查看答案和解析>>

同步練習(xí)冊答案