11.已知f(x)是定義在(0,+∞)上的減函數(shù),若f(2a2+a+1)<f(3a2-4a+1)成立,求a的取值范圍.

分析 根據(jù)函數(shù)的單調(diào)性的性質(zhì)可得2a2+a+1>3a2-4a+1,解此一元二次不等式求得a的取值范圍.

解答 解:根據(jù)f(x)是定義在(0,+∞)上的減函數(shù),若f(2a2+a+1)<f(3a2-4a+1)成立,
可得2a2+a+1>3a2-4a+1>0,即$\left\{\begin{array}{l}{{2a}^{2}+a+1>{3a}^{2}-4a+1}\\{{3a}^{2}-4a+1>0}\end{array}\right.$,
由此求得0<a<5,即a的取值范圍(0,$\frac{1}{3}$)∪(1,5).

點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性的性質(zhì),解一元二次不等式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=1+2sinxcosx-2sin2x(x∈R).
(1)求函數(shù)f(x)的最小正周期;
(2)解不等式:f(x)≥$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知集合A={x|ax2-3x+2=0}.若A=∅,則實(shí)數(shù)a的取值范圍為($\frac{9}{8}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在平面上,過(guò)點(diǎn)P作直線l的垂線所得的垂足稱為點(diǎn)P在直線l上的投影.若點(diǎn)P(-1,0)在直線ax-y-a-2=0上的投影是Q,則Q的軌跡方程是x2+(y+1)2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列函數(shù)的最小值是2的為( 。
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{{x^2}+2}}{{\sqrt{{x^2}+1}}}$D.y=x+$\frac{1}{x-1}$(x>1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(I)如表所示是某市最近5年個(gè)人年平均收入表節(jié)選.求y關(guān)于x的回歸直線方程,并估計(jì)第6年該市的個(gè)人年平均收入(保留三位有效數(shù)字).
年份x12345
收入y(千元)2124272931
其中$\sum_{i=1}^{5}$xiyi=421,$\sum_{i=1}^{5}$xi2=55,$\overline{y}$=26.4
附1:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$
(II)如表是從調(diào)查某行業(yè)個(gè)人平均收入與接受專業(yè)培訓(xùn)時(shí)間關(guān)系得到2×2列聯(lián)表:
受培時(shí)間一年以上受培時(shí)間不足一年總計(jì)
收入不低于平均值602080               
收入低于平均值101020
總計(jì)7030100
完成上表,并回答:能否在犯錯(cuò)概率不超過(guò)0.05的前提下認(rèn)為“收入與接受培訓(xùn)時(shí)間有關(guān)系”.
附2:
P(K2≥k00.500.400.100.050.010.005
k00.4550.7082.7063.8416.6357.879
附3:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.(n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知p:|x-1|≤1,q:x2-2x-3≥0,則p是¬q的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.直線x=$\frac{π}{4}$的傾斜角為( 。
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案