16.已知等比數(shù)列{an},且a6+a8=4,則a6(a6+2a8)a82的值為(  )
A.2B.4C.8D.16

分析 由等比數(shù)列性質(zhì),得a6(a6+2a8)a82=${{a}_{6}}^{2}+2{a}_{6}{a}_{8}+{{a}_{8}}^{2}$=(a6+a82,由此能求出結(jié)果.

解答 解:∵等比數(shù)列{an},且a6+a8=4,
∴由等比數(shù)列性質(zhì),得:
a6(a6+2a8)a82=${{a}_{6}}^{2}+2{a}_{6}{a}_{8}+{{a}_{8}}^{2}$=(a6+a82=16.
故選:D.

點(diǎn)評 本題考查等比數(shù)列代數(shù)式求和,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,已知a、b、c分別表示∠A、∠B、∠C所對邊的長,若$(a+b+c)(c+b-a)=(2-\sqrt{3})bc$,則∠A=( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一個(gè)直角梯形的面積為2,在斜二測畫法下,它的直觀圖面積為$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(x,2),若$\overrightarrow{a}$∥$\overrightarrow$,則x=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,$\vec a$與$\vec b$的夾角為60°,$\overrightarrow{c}$=5$\overrightarrow{a}$-3$\overrightarrow$,$\overrightarrow7aom5ca$=3$\overrightarrow{a}$+k$\overrightarrow$,當(dāng)實(shí)數(shù)k為何值時(shí).
(1)$\vec c$∥$\vec d$;
(2)$\vec c$⊥$\vec d$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列A:a1,a2,a3,a4,a5,其中ai∈{-1,0,1},i=1,2,3,4,5,則滿足條件:a1+a2+a3+a4+a5=3的不同數(shù)列A一共有15個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)$f(x)=2\sqrt{3}sinxcosx+2{cos^2}x+a-1(a∈R,a是常數(shù))$
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)$若f(x)在[{-\frac{π}{4},\frac{π}{4}}]上的最大值與最小值之和為\sqrt{3},求實(shí)數(shù)a的值$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在區(qū)間[0,π]上隨機(jī)取一實(shí)數(shù)x,則事件“$\frac{{\sqrt{2}}}{2}≤sinx≤\frac{{\sqrt{3}}}{2}$”發(fā)生的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{12}$C.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}-\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)f(x)=sinx-$\sqrt{3}$cosx的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案