19.已知兩平面α,β,兩直線m,n,下列命題中正確的是( 。
A.若m∥α,n?α,則m∥nB.若m?α,n?α,且m∥β,n∥β,則α∥β
C.若m⊥α,m∥n,n?β,則α⊥βD.若m∥α,α∩β=n,則m∥n

分析 在A中,m與n平行或異面;在B中,α與β相交或平行;在C中,由面面垂直的判定定理得α⊥β;在D中,m與n平行或異面.

解答 解:由兩平面α,β,兩直線m,n,知:
在A中:若m∥α,n?α,則m與n平行或異面,故A錯(cuò)誤;
在B中:若m?α,n?α,且m∥β,n∥β,則α與β相交或平行,故B錯(cuò)誤;
在C中:若m⊥α,m∥n,n?β,則由面面垂直的判定定理得α⊥β,故C正確;
在D中:若m∥α,α∩β=n,則m與n平行或異面,故D錯(cuò)誤.
故選:C.

點(diǎn)評(píng) 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.y=loga(4-x2)(0<a<1)的單調(diào)增區(qū)間為[0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知M、N分別是四面體OABC的棱OA,BC的中點(diǎn),P點(diǎn)在線段MN上,且MP=2PN,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則$\overrightarrow{OP}$=( 。
A.$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$B.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$C.$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow$+$\frac{1}{6}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知點(diǎn)P(x,y)為圓x2+y2=1上的動(dòng)點(diǎn),則3x+4y的最小值為(  )
A.5B.1C.0D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知全集U=R,A={y|y=2x+1},B={x|y=lnx},則(∁UA)∩B=(  )
A.B.{x|$\frac{1}{2}$<x≤1}C.{x|x<1}D.{x|0<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,在矩形ABCD中,AB=$\sqrt{3}$,BC=1,沿AC將矩形ABCD折疊,連接BD,所得三棱錐D-ABC的正視圖和俯視圖如圖所示,則三棱錐D-ABC的側(cè)視圖的面積為$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長(zhǎng)BA和CD相交于點(diǎn)P,A是PB的一個(gè)三等點(diǎn),D是PC的中點(diǎn).
(1)求$\frac{AD}{BC}$的值:
(2)若BD為圓O的直徑,AD=$\frac{\sqrt{2}}{2}$,求圓O的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某校高中一年級(jí)組織學(xué)生參加了環(huán)保知識(shí)競(jìng)賽,并抽取了20名學(xué)生的成績(jī)進(jìn)行分析,如圖是這20名學(xué)生競(jìng)賽成績(jī)(單位:分)的頻率分布直方圖,其分組為[100,110),[110,120),…,[130,140),[140,150].
(Ⅰ) 求圖中a的值及成績(jī)分別落在[100,110)與[110,120)中的學(xué)生人數(shù);
(Ⅱ) 學(xué)校決定從成績(jī)?cè)赱100,120)的學(xué)生中任選2名進(jìn)行座談,求此2人的成績(jī)都在[110,120)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=Asin(3x+φ)在$x=\frac{π}{12}$時(shí)取得最大值4,其中A>0,0<φ<π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若$f(α+\frac{π}{12})=\frac{12}{5}$,求cos(3α+π)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案