等比數(shù)列{an}中,公比q=4,且前3項(xiàng)之和是21,則數(shù)列的通項(xiàng)公式an=
 
考點(diǎn):等比數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:根基題意和等比數(shù)列的前n項(xiàng)和公式先求出a1,代入等比數(shù)列的通項(xiàng)公式化簡(jiǎn)即可.
解答: 解:因?yàn)楣萹=4,且前3項(xiàng)之和是21,
所以21=
a1(1-43)
1-4
,解得a1=1,
所以an=a1•4n-1=4n-1,
故答案為:4n-1
點(diǎn)評(píng):本題考查等比數(shù)列的前n項(xiàng)和公式、通項(xiàng)公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列結(jié)論:
4(-2)4
=±2;
②y=x2+1,x∈[-1,2],y的值域是[2,5];
③冪函數(shù)圖象一定不過第四象限;
④函數(shù)f(x)=ax+1-2(a>0,a≠1)的圖象過定點(diǎn)(-1,-1);
⑤若lna<1成立,則a的取值范圍是(-∞,e).
其中正確的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
2
1-i
=( 。
A、1+iB、1-i
C、iD、1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=cos(ωx+
π
3
)在點(diǎn)(
π
2
,0)處切線斜率為k,若|k|<1,求ω.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)
481×
9
3
2
;           
(2)2
3
×
31.5
×
612

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=alnx+x2+bx(a,b∈R,a≠0,且x=1為f(x)的極值點(diǎn).
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)遞減區(qū)間;
(2)若f(x)=0恰有兩解,試求實(shí)數(shù)a的取值范圍;
(3)在(1)的條件下,設(shè)g(x)=f(x+1)-x2+x+2,證明:
n
k=1
1
g(k)
3n2+5n
(n+1)(n+2)
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=1,過點(diǎn)P(a,0)(其中a>1)作圓的兩條切線,切點(diǎn)為M,N,求
PM
PN
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,a5+b2=a3+b3=7.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若M,A,B三點(diǎn)不共線,且存在實(shí)數(shù)λ1,λ2,使
MC
1
MA
2
MB
,求證:“C為A,B的中點(diǎn)”的充要條件是“λ12=
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案