4.設(shè)離散型隨機(jī)變量X的分布列為
X01234
P0.20.10.10.30.3
若離散型隨機(jī)變量Y滿足Y=2X+1,則E(Y)=5.8;D(Y)=23.2.

分析 利用數(shù)學(xué)期望計(jì)算公式、方差的性質(zhì)即可得出.

解答 解:E(X)=0+1×0.1+2×0.1+3×0.3+4×0.3=2.4.
∴E(Y)=2E(X)+1=5.8;
D(Y)=22E(X)=23.2.
故答案為:5.8,23.2.

點(diǎn)評 本題考查了數(shù)學(xué)期望計(jì)算公式、方差的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.滿足條件{2,3}⊆M⊆{1,2,3,4 }的集合M的個數(shù)是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知正三棱柱ABC-A'B'C'棱長均為2,E為AB中點(diǎn).點(diǎn)D在側(cè)棱BB'上.
(Ⅰ)求AD+DC'的最小值;
(Ⅱ)當(dāng)AD+DC'取最小值時,在CC'上找一點(diǎn)F,使得EF∥面ADC'.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在我國明代數(shù)學(xué)家吳敬所著的《九章算術(shù)比類大全》中,有一道數(shù)學(xué)名題叫“寶塔裝燈”,內(nèi)容為“遠(yuǎn)望巍巍塔七層,紅燈點(diǎn)點(diǎn)倍加增;共燈三百八十一,請問頂層幾盞燈?”(“倍加增”指燈的數(shù)量從塔的頂層到底層按公比為2的等比數(shù)列遞增).根據(jù)此詩,可以得出塔的頂層和底層共有( 。
A.3盞燈B.192盞燈C.195盞燈D.200盞燈

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.4名學(xué)生被中大、華工、華師錄取,若每所大學(xué)至少要錄取1名,則共有不同的錄取方法36種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在平面直角坐標(biāo)系xOy中,曲線x2+y2=2|x|+2|y|圍成的圖形的面積為4π+8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,在三棱錐A-BCD中,已知三角形ABC和三角形DBC所在平面互相垂直,AB=BD,∠CBA=∠CBD=$\frac{2π}{3}$,則直線AD與平面BCD所成角的大小是( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若0<a<b<1,c>1,則( 。
A.ac>bcB.abc>bacC.logab>logbaD.logac<logbc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.直三棱柱ABC-A1B1C1中,∠BAC=90°,BC=2,CC1=1,直線BC1與平面A1ABB1所成角等于60°,則三棱柱ABC-A1B1C1的側(cè)面積為為$\frac{5+\sqrt{15}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案