【題目】已知數(shù)列的前項(xiàng)和為,且

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè),求數(shù)列項(xiàng)和

【答案】(Ⅰ)(Ⅱ)

【解析】試題分析:當(dāng)時(shí), 兩式相減可得,驗(yàn) 可得是以首項(xiàng)為2,公比為2等比數(shù)列,進(jìn)而可得結(jié)果;(結(jié)合可得利用錯(cuò)位相減法求和可得結(jié)果.

試題解析:(Ⅰ)

當(dāng)時(shí), ,

當(dāng)時(shí),

兩式相減,得所以

所以是以首項(xiàng)為2,公比為2等比數(shù)列,

所以

(Ⅱ)因?yàn)?/span>

兩式相減,得即

所以

【易錯(cuò)點(diǎn)晴】本題主要考查數(shù)列的通項(xiàng)及等比數(shù)列、“錯(cuò)位相減法”求數(shù)列的和,屬于難題. “錯(cuò)位相減法”求數(shù)列的和是重點(diǎn)也是難點(diǎn),利用“錯(cuò)位相減法”求數(shù)列的和應(yīng)注意以下幾點(diǎn):①掌握運(yùn)用“錯(cuò)位相減法”求數(shù)列的和的條件(一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的積);②相減時(shí)注意最后一項(xiàng) 的符號(hào);③求和時(shí)注意項(xiàng)數(shù)別出錯(cuò);④最后結(jié)果一定不能忘記等式兩邊同時(shí)除以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx=|x+1|+|x-1|,不等式fx<4的解集為M.

1M.

2當(dāng)a,bM時(shí),證明:2|a+b|<|4+ab|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一塊多邊形的菜地,它的水平放置的平面圖形的斜二測(cè)直觀圖是直角梯形(如圖)∠ABC=45°,AB= , AD=1,DC⊥BC,則這塊菜地的面積為 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)在[0,+∞)上遞增,=0,已知g(x)=﹣f(|x|),滿足的x的取值范圍是( 。
A.(0,+∞)
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下圖中,四邊形 ABCD是等腰梯形, , ,OQ分別為線段AB、CD的中點(diǎn),OQEF的交點(diǎn)為P,OP=1,PQ=2,現(xiàn)將梯形ABCD沿EF折起,使得,連結(jié)AD、BC,得一幾何體如圖所示.

(Ⅰ)證明:平面ABCD平面ABFE;

(Ⅱ)若上圖中, ,CD=2,求平面ADE與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4x﹣2x+1+3,當(dāng)x∈[﹣2,1]時(shí),f(x)的最大值為m,最小值為n,
(1)若角α的終邊經(jīng)過點(diǎn)P(m,n),求sinα+cosα的值;
(2)g(x)=mcos(nx+)+n,求g(x)的最大值及自變量x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=的值域是[0,+∞),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x)在(﹣∞,0)上單調(diào)遞減,且f(2)=0,則不等式xf(x﹣1)>0的解集是(
A.(﹣3,﹣1)
B.(﹣3,1)∪(2,+∞)
C.(﹣3,0)∪(3,+∞)
D.(﹣1,0)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為ab,c,且(2bc)cos Aacos C

(1)求角A的大;

(2)若a=3,b=2c,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案