【題目】設(shè)是定義在上的偶函數(shù), ,都有,且當(dāng)時(shí), ,若函數(shù)()在區(qū)間內(nèi)恰有三個(gè)不同零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B.
C. D.
【答案】A
【解析】由可得函數(shù)的圖象關(guān)于對(duì)稱,即
又函數(shù)是偶函數(shù),則,
∴,即函數(shù)的周期是4.
當(dāng)時(shí), ,此時(shí),
由得,令.
∵函數(shù)()在區(qū)間內(nèi)恰有三個(gè)不同零點(diǎn),
∴函數(shù)和的圖象在區(qū)間內(nèi)有三個(gè)不同的公共點(diǎn).
作出函數(shù)的圖象如圖所示.
①當(dāng)時(shí),函數(shù)為增函數(shù),
結(jié)合圖象可得,要使兩函數(shù)的圖象有三個(gè)公共點(diǎn),則需滿足在點(diǎn)A處的函數(shù)值小于2,在點(diǎn)B處的函數(shù)值大于2,
即,解得;
②當(dāng)時(shí),函數(shù)為減函數(shù),
結(jié)合圖象可得,要使兩函數(shù)的圖象有三個(gè)公共點(diǎn),則需滿足在點(diǎn)C處的函數(shù)值小于,在點(diǎn)B處的函數(shù)值大于,
即,解得.
綜上可得實(shí)數(shù)的取值范圍是.選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l經(jīng)過點(diǎn)P(2,0),其傾斜角為,在以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸的極坐標(biāo)系中(取相同的長度單位),曲線C的極坐標(biāo)方程為.
(Ⅰ)若直線l與曲線C有公共點(diǎn),求傾斜角的取值范圍;
(Ⅱ)設(shè)M(x,y)為曲線C上任意一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
(1)求關(guān)于的線性回歸方程;
(2)利用(Ⅰ)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,底面,,,分別是棱,的中點(diǎn),為棱上的一點(diǎn),且//平面.
(1)求的值;
(2)求證:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(Ⅰ)若花店一天購進(jìn)17枝玫瑰花,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:枝, )的函數(shù)解析式.
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(1)若花店一天購進(jìn)17枝玫瑰花, 表示當(dāng)天的利潤(單位:元),求的分布列及數(shù)學(xué)期望;
(2)若花店計(jì)劃一天購進(jìn)16枝或17枝玫瑰花,以利潤角度看,你認(rèn)為應(yīng)購進(jìn)16枝好還是17枝好?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把長和寬分別為和2的長方形沿對(duì)角線折成的二面角,下列正確的命題序號(hào)是__________.
①四面體外接球的體積隨的改變而改變;
②的長度隨的增大而增大;
③當(dāng)時(shí),長度最長;
④當(dāng)時(shí),長度等于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,四邊形為矩形,四邊形為梯形, ,平面與平面垂直,且.
(1)求證: 平面;
(2)若,且平面與平面所成銳二面角的余弦值為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】無窮數(shù)列滿足: 為正整數(shù),且對(duì)任意正整數(shù), 為前項(xiàng), , , 中等于的項(xiàng)的個(gè)數(shù).
(Ⅰ)若,請(qǐng)寫出數(shù)列的前7項(xiàng);
(Ⅱ)求證:對(duì)于任意正整數(shù),必存在,使得;
(Ⅲ)求證:“”是“存在,當(dāng)時(shí),恒有 成立”的充要條件。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知四棱錐 中,
.
(1)證明:頂點(diǎn)在底面的射影為邊的中點(diǎn);
(2)點(diǎn)在上,且,求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com