如果定義在R上的函數(shù)f(x)對任意兩個不等的實數(shù)x1,x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱函數(shù)f(x)為“Z函數(shù)”給出函數(shù):
①y=-x3+1,②y=3x-2sinx-2cosx③y=
ln|x|,x≠0
0,x=0
④y=
x2+4x,x≥0
-x2+x,x<0

以上函數(shù)為“Z函數(shù)”的序號為
 
考點:抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等價為(x1-x2)[f(x1)-f(x2)]>0,即滿足條件的函數(shù)為單調(diào)遞增函數(shù),判斷函數(shù)的單調(diào)性即可得到結(jié)論.
解答: 解:∵對于任意給定的不等實數(shù)x1,x2,不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立,
∴不等式等價為(x1-x2)[f(x1)-f(x2)]>0恒成立,
即函數(shù)f(x)是定義在R上的增函數(shù).
①函數(shù)y=-x3+1在定義域上單調(diào)遞減.不滿足條件.
②y=3x-2sinx-2cosx,y′=3-2cosx+2sinx=3+2(sinx-cox)=3-2
2
sin(x-
π
4
)>0,函數(shù)單調(diào)遞增,滿足條件.
③f(x)=y=
ln|x|,x≠0
0,x=0
,當(dāng)x>0時,函數(shù)單調(diào)遞增,當(dāng)x<0時,函數(shù)單調(diào)遞減,不滿足條件.
④y=
x2+4x,x≥0
-x2+x,x<0
,當(dāng)x>0時,函數(shù)單調(diào)遞增,當(dāng)x<0時,函數(shù)單調(diào)遞減,不滿足條件.
故答案為:②
點評:本題主要考查函數(shù)單調(diào)性的應(yīng)用,將條件轉(zhuǎn)化為函數(shù)的單調(diào)性的形式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)在(-∞,1)上是減函數(shù),且函數(shù)y=f(x+1)的圖象的對稱軸x=0,則有f(2),f(3),f(-1)的大小關(guān)系為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-
π
2
<x<0,sinx+cosx=
1
5

(1)求sinx•cosx的值;
(2)求sinx-cosx的值;
(3)求
2sinxcosx+2sin2x
1-tanx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)log2(3-2x)+log0.5(3x-1)<0,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對任意的x∈[0,t](t>0),存在實數(shù)a,使得關(guān)于x的不等式ex(e2x+a2)-2ae2x≤1恒成立,則t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x+a≤0},B={x|x2-3x+2≤0},且A?B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集I={1,2,3,4,5},集合A={1,2,3},且A∩B={2,3},則滿足條件的B集合的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列-10,-8,-6,-4的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)對于所有的正實數(shù)x均有f(3x)=3f(x),且f(x)=1-|x-2|(1≤x≤3),則使得f(x)=f(2014)的最小的正實數(shù)x的值為( 。
A、173B、416
C、556D、589

查看答案和解析>>

同步練習(xí)冊答案