已知函數(shù)f(x2+1)=x(x≥0).
(1)求函數(shù)f(x)的解析式;
(2)判斷f(x)的單調(diào)性,并用定義證明.
考點(diǎn):函數(shù)解析式的求解及常用方法,函數(shù)單調(diào)性的判斷與證明
專題:計(jì)算題,證明題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用換元法求函數(shù)的解析式;
(2)判斷f(x)=
x-1
在[1,+∞)上是增函數(shù),五步證明函數(shù)的單調(diào)性.
解答: 解:(1)令x2+1=t,t≥1,
則x=
t2-1

故f(t)=
t2-1
,
故f(x)=
x-1
,(x≥1);
(2)f(x)=
x-1
在[1,+∞)上是增函數(shù),
證明如下,
任取x1,x2∈[1,+∞),且x1<x2;
則f(x1)-f(x2)=
x1-1
-
x2-1

=
x1-x2
x1-1
+
x2-1
;
∵x1<x2,
∴f(x1)-f(x2)<0,
故f(x)在[1,+∞)上是增函數(shù).
點(diǎn)評(píng):本題考查了函數(shù)的解析式的求法及函數(shù)的單調(diào)性的判斷與證明,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)A(1,2)、B(3,5),將向量
AB
按向量
a
=(-1,-1)平移后得到
A′B′
為( 。
A、(1,2)
B、(2,3)
C、(3,4)
D、(4,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=log a2-1(2x+1)在區(qū)間(-
1
2
,0)上恒有f(x)>0.
(1)求a的取值范圍,
(2)判斷f(x)的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M在第四象限內(nèi),且M到原點(diǎn)的距離等于2,求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若無(wú)窮等比數(shù)列{an}的各項(xiàng)和等于公比q,則首項(xiàng)a1的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)F作一直線交橢圓于P、Q兩點(diǎn),若線段PF與QF的長(zhǎng)分別p、q,則
1
p
+
1
q
是否為定值?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
3
sin2x+sinxcosx+
2-
3
2

(1)求f(x)的周期和單調(diào)減區(qū)間;
(2)求f(x)的對(duì)稱軸;
(3)求f(x)在區(qū)間[-
π
3
π
3
]上的最值并求出取最值時(shí)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)平面圖形的面積為S,其直觀圖的面積為S′,則S:S′=( 。
A、2
2
B、
2
C、2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos(
π
4
+x)=-
3
5
11π
12
<x
4
,求
1-tanx
sin2x+2sin2x
的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案