已知一條長為6的線段兩端點A和B分別在x和y軸上滑動,點M在線段AB上,且AM:MB=1:2,求動點M的軌跡方程.
考點:軌跡方程
專題:計算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)M(x,y),A(a,0),B(0,b),根據(jù)且AM:MB=1:2,確定坐標之間的關(guān)系,代入a2+b2=36,可得結(jié)論.
解答: 解:設(shè)M(x,y),A(a,0),B(0,b)
則a2+b2=36,…①
∵且AM:MB=1:2,∴x=
2
3
a,y=
1
3
b,
由此可得a=
3
2
x且b=3y,代入①式可得
9
4
x2+9y2=36,
化簡得x2+4y2=16,即為所求點M的軌跡方程.
點評:本題給出動點滿足的條件,求動點的軌跡方程,考查向量的坐標運算、橢圓的定義與標準方程和動點軌跡的求法等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)+x是偶函數(shù),且f(2)=3,則f(-2)=( 。
A、-7B、7C、-5D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以3、4、5為邊長的直角三角形,各邊分別增加x(x>0)個單位,得到的三角形一定是(  )
A、銳角三角形
B、直角三角形
C、鈍角三角形
D、銳角或鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=alnx-x2+ax(a>0),若y=g(x)在區(qū)間(0,2)上不單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知內(nèi)接于圓的四邊形的對角線互相垂直,求證:圓心到一邊的距離等于這條邊所對邊長的一半.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2x+y=6,x>0,y>0,求xy的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果圓(x-a)2+(y-a)2=2上有且只有兩個點到原點的距離為1,則正實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等比數(shù)列,那么a3>a4>a5是an為遞減數(shù)列的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
x2+4
x2+3
的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案