8.在△ABC中,角A,B,C所對的邊分別為a,b,c.已知b2+c2=a2+bc.
(Ⅰ)求A的大;
(Ⅱ)如果$sinC=\frac{{\sqrt{3}}}{3}$,c=2,求a的值.

分析 (Ⅰ)由已知可得b2+c2-a2=bc,由余弦定理可得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,結(jié)合范圍A∈(0,π),即可解得A的值.
(Ⅱ)由已知及正弦定理即可解得a的值.

解答 解:(Ⅰ)在△ABC中,∵b2+c2=a2+bc,可得:b2+c2-a2=bc,
∴由余弦定理可得:cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴可得:A=$\frac{π}{3}$.
(Ⅱ)∵A=$\frac{π}{3}$,$sinC=\frac{{\sqrt{3}}}{3}$,c=2,
∴由正弦定理可得:a=$\frac{csinA}{sinC}$=$\frac{2×\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{3}}$=3.

點(diǎn)評 本題主要考查了余弦定理,正弦定理,余弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某電視機(jī)的廣告支出x(單位:萬元)與銷售收入y(單位:萬元)之間有如表所對應(yīng)的關(guān)系:
廣告支出x(單位:萬元)1234
銷售收入y(單位:萬元)12284256
(1)求出y對x的回歸直線方程;
(2)若廣告費(fèi)為9萬元,則銷售收入為多少萬元?
(參考公式:$b=\frac{{{x_1}{y_1}+{x_2}{y_2}+…+{x_n}{y_n}-n\overline x•\overline y}}{{x_1^2+x_2^2+…+x_n^2-n{{\overline x}^2}}}$,$a=\overline y-b\overline x$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知0<a<1,f(x)=ax,g(x)=logax,h(x)=$\sqrt{x}$,當(dāng)x>1時(shí),則有( 。
A.f(x)<g(x)<h(x)B.g(x)<f(x)<h(x)C.g(x)<h(x)<f(x)D.h(x)<g(x)<f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在${(x+\frac{2}{x})^6}$的展開式中,常數(shù)項(xiàng)為( 。
A.160B.64C.20D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,且a<b<c,$\sqrt{3}a=2bsinA$.
(Ⅰ)求B的大;
(Ⅱ)若a=2,$b=\sqrt{7}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若f(x)=$\frac{x}{x-1}$,則$f({\frac{x}{x-1}})$=x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)不等式組$\left\{\begin{array}{l}x-y≤0\\ x+y≤4\\ x≥1\end{array}\right.$表示的平面區(qū)域?yàn)镸,點(diǎn)P(x,y)是平面區(qū)域內(nèi)的動(dòng)點(diǎn),則z=2x-y的最大值是2,若直線l:y=k(x+2)上存在區(qū)域M內(nèi)的點(diǎn),則k的取值范圍是$[\frac{1}{3},\;1]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)$z=\frac{1-i}{2-i}$(其中i為虛數(shù)單位),則復(fù)數(shù)z在坐標(biāo)平面內(nèi)對應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an},an=n(a-ban),且a2=$\frac{6}{5}$,a3=$\frac{9}{7}$.
(1)求a1,an;
(2)求證:an<an+1
(3)求證:an∈[1,$\frac{3}{2}$).

查看答案和解析>>

同步練習(xí)冊答案