分析 由條件求得x的系數(shù)為an以及x2的系數(shù)為bn 的值,可得$\frac{_{2014}-_{2015}}{{a}_{2014}}$的值.
解答 解:(1+$\frac{x}{2}$)(1+$\frac{x}{{2}^{2}}$)…(1+$\frac{x}{{2}^{n}}$)(n∈N*,n≥2)展開式中,
x的系數(shù)為an=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n}}$,
x2的系數(shù)為bn =$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{n+(n-1)}}$=$\frac{\frac{1}{8}(1{-2}^{2n-3})}{1-\frac{1}{2}}$=$\frac{1}{4}$-22n-5,
∴$\frac{_{2014}-_{2015}}{{a}_{2014}}$=$\frac{(\frac{1}{4}{-2}^{2023})-(\frac{1}{4}{-2}^{2025})}{1{-(\frac{1}{2})}^{2014}}$=$\frac{{2}^{2025}{-2}^{2023}}{1-\frac{1}{{2}^{2014}}}$=$\frac{3{×2}^{4037}}{{2}^{2014}-1}$,
故答案為:$\frac{3{×2}^{4037}}{{2}^{2014}-1}$.
點評 本題主要考查二項式定理的應用,等比數(shù)列的前n項和公式,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數(shù) | 15 | 30 | 125 | 198 | 77 | 35 | 20 |
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) | ||||
頻數(shù) | 40 | 70 | 79 | 162 | 59 | 55 | 35 |
甲廠 | 乙廠 | 合計 | |
優(yōu)質(zhì)品 | |||
非優(yōu)質(zhì)品 | |||
合計 |
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.025 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-8,-1] | B. | [-10,0] | C. | [-10,6] | D. | (-6,6] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com