1.有分別寫著數(shù)字1到120的120張卡片,從中取出1張,這樣卡片上的數(shù)字是2的倍數(shù)或是3的倍數(shù)的概率是( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{4}{7}$D.$\frac{2}{3}$

分析 卡片上的數(shù)字是2的倍數(shù)的有60個,是3的倍數(shù)的有40個,是6的倍數(shù)的有20個,由此能求出卡片上的數(shù)字是2的倍數(shù)或是3的倍數(shù)的概率.

解答 解:有分別寫著數(shù)字1到120的120張卡片,從中取出1張,
基本事件總數(shù)為120,
這樣卡片上的數(shù)字是2的倍數(shù)的有60個,是3的倍數(shù)的有40個,是6的倍數(shù)的有20個,
∴卡片上的數(shù)字是2的倍數(shù)或是3的倍數(shù)的有60+40-20=80個,
∴卡片上的數(shù)字是2的倍數(shù)或是3的倍數(shù)的概率p=$\frac{80}{120}$=$\frac{2}{3}$.
故選:D.

點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等可能事件概率計算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=log3(2x-1)的定義域為($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知圓C過坐標(biāo)原點(diǎn)O,且與x軸、y軸分別交于點(diǎn)A、B,圓心坐標(biāo)為(t,t)(t>0).
(1)若△AOB的面積為2,求圓C的方程;
(2)直線2x+y-6=0與圓C交于點(diǎn)D、E,是否存在t使得|OD|=|OE|?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某品牌汽車4S店,對該品牌旗下的A型、B型、C型汽車進(jìn)行維修保養(yǎng),每輛車一年內(nèi)需要維修的人工費(fèi)用為200元,汽車4S店記錄了該品牌三種類型汽車各100輛到店維修的情況,整理得下表:
車型A型B型C型
頻數(shù)204040
假設(shè)該店采用分層抽樣的方法從上維修的100輛該品牌三種類型汽車中隨機(jī)抽取10輛進(jìn)行問卷回訪.
(1)從參加問卷到訪的10輛汽車中隨機(jī)抽取兩輛,求這兩輛汽車來自同一類型的概率;
(2)某公司一次性購買該品牌A、B、C型汽車各一輛,記ξ表示這三輛車的一年維修人工費(fèi)用總和,求ξ的分布列及數(shù)學(xué)期望(各型汽車維修的概率視為其需要維修的概率);
(3)經(jīng)調(diào)查,該品牌A型汽車的價格與每月的銷售量之間有如下關(guān)系:
價格(萬元)2523.52220.5
銷售量(輛)30333639
已知A型汽車的購買量y與價格x符合如下線性回歸方程:$\stackrel{∧}{y}$=$\stackrel{∧}$x+80,若A型汽車價格降到19萬元,請你預(yù)測月銷售量大約是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足ccosB=(2a+b)cos(π-C).
(1)求角C的大小;
(2)若c=4,△ABC的面積為$\sqrt{3}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)y=$\left\{\begin{array}{l}x^2-3(x≥0)\\ 2x^2-6(x<0)\end{array}$,畫出程序框圖,對每輸入的一個x值,都得到相應(yīng)的函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)$f(x)={log_a}({a{x^2}-x})({0<a<1})$,則該函數(shù)的單調(diào)減區(qū)間為( 。
A.(-∞,0)B.$({-∞,\frac{1}{2a}})$C.$({0,\frac{1}{a}})$D.$({\frac{1}{a},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.?dāng)?shù)列$1,-\frac{3}{4},\frac{1}{2},-\frac{5}{16},…$的一個通項公式為(  )
A.${(-1)^n}\frac{n+1}{2n}$B.${(-1)^{n+1}}\frac{2n-1}{2n}$C.${(-1)^{n+1}}\frac{n+1}{2^n}$D.${(-1)^{n+1}}\frac{2n-1}{2^n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.當(dāng)m=8時,執(zhí)行如圖所示的程序框圖,輸出S的值為1680.

查看答案和解析>>

同步練習(xí)冊答案