11.函數(shù)y=log3(2x-1)的定義域為($\frac{1}{2}$,+∞).

分析 令2x-1>0解出定義域.

解答 解:由函數(shù)有意義得2x-1>0,解得x$>\frac{1}{2}$.
∴y=log3(2x-1)的定義域為($\frac{1}{2}$,+∞).
故答案為($\frac{1}{2}$,+∞).

點評 本題考查了導(dǎo)數(shù)函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知等差數(shù)列{an}的前n項和為Sn,且滿足a32+a62=5,則S9的最大值是$\frac{9\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.一個幾何體的三視如圖所示,其中正視圖和俯視圖均為腰長為2的等腰直角三角形,則用3個這樣的幾何體可以拼成一個棱長為2的正方體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若關(guān)于x的不等式x2+mx+m-1≥0恒成立,則實數(shù)m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,四棱錐P-ABCD中,O是底面正方形ABCD 的中心,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點.
(Ⅰ)證明:EO∥平面PAD;
(Ⅱ)證明:DE⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.運行如圖所示的程序框圖,所得的結(jié)果是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某地有如圖所示的一塊不規(guī)則的非農(nóng)業(yè)用地ABCO,且AB⊥BC,OA∥BC,AB=BC=4km,AO=2km,曲線段OC是以O(shè)為頂點,開口向上,且對稱軸平行于AB的拋物線的一段.當(dāng)?shù)卣疄榭萍寂d市,欲將該地規(guī)劃建成一個矩形高科技工業(yè)園區(qū)PMBN,矩形的相鄰兩邊BM,BN分別落在AB,BC上,頂點P在曲線段OC上.問應(yīng)如何規(guī)劃才能使矩形園區(qū)的用地面積最大?并求出最大的用地面積(精確到0.1 km2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某種產(chǎn)品的廣告費用支出x(千元)與銷售額y(萬元)之間有如下對應(yīng)數(shù)據(jù):
x24568
y34657
(參考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\bar x\bar y}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}},\hat a=\bar y-\hat b\bar x$)
(1)根據(jù)上表數(shù)據(jù),用最小二乘法求出銷售額y關(guān)于費用支出x的線性回歸方程;
(參考值:2×3+4×4+5×6+6×5+8×7=138,22+42+52+62+82=145)
(2)當(dāng)廣告費用支出10千元時,預(yù)測一下該商品的銷售額為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.有分別寫著數(shù)字1到120的120張卡片,從中取出1張,這樣卡片上的數(shù)字是2的倍數(shù)或是3的倍數(shù)的概率是( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{4}{7}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案