19.直線y=2x+1與圓x2+y2=2的位置關(guān)系一定是(  )
A.相離B.相切
C.相交但直線不過圓心D.相交且直線過圓心

分析 求出圓心到直線的距離d,與圓的半徑r比較大小即可判斷出直線與圓的位置關(guān)系,同時判斷圓心是否在直線上,即可得到正確答案.

解答 解:由圓的方程得到圓心坐標(biāo)(0,0),半徑r=$\sqrt{2}$
則圓心(0,0)到直線y=2x+1的距離d=$\frac{1}{\sqrt{5}}$<r=$\sqrt{2}$,
把(0,0)代入直線方程左右兩邊不相等,得到直線不過圓心.
所以直線與圓的位置關(guān)系是相交但直線不過圓心.
故選:C.

點評 此題考查學(xué)生掌握判斷直線與圓位置關(guān)系的方法是比較圓心到直線的距離d與半徑r的大小,靈活運用點到直線的距離公式化簡求值,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知在Rt△ABC中,∠C=90°,點P在平面ABC外,且PA=PB=PC,PO⊥平面ABC于點P,則O是(  )
A.AC邊的中點B.BC邊的中點C.AB邊的中點D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓方程為$\frac{{x}^{2}}{2}$+y2=1,點B(0,1)為橢圓的上頂點,直線l:y=kx+m交橢圓于P、Q兩點,設(shè)直線PB,QB的斜率分別為k1、k2,且k1k2=1
(1)求證:直線l過定點M,并求出點M的坐標(biāo);
(2)求△BPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知圓C:x2+y2-2x-4y+1=0上存在兩點關(guān)于直線l:x+my+1=0對稱,則實數(shù)m=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,設(shè)圓O1與O2的半徑分別為3和2,O1O2=4,A,B為兩圓的交點,試求兩圓的公共弦AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=|x-a|.
(Ⅰ)當(dāng)a=2時,解不等式f(x)≥|x|+1;
(Ⅱ)若f(x)≤1在[0,1]上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)點M(1,m),若在圓O:x2+y2=1上存在一點N,使得∠OMN=30°,則實數(shù)m的取值范圍是[-$\sqrt{3}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知關(guān)于x的不等式x2+px+q<0的解集是-$\frac{1}{2}$<x<$\frac{1}{3}$,求不等式qx2+px+1<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.直四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,∠ADC=120°,AA1=AB=1,點O1、O分別是上下底菱形對角線的交點.
(1)求證:A1O∥平面CB1D1;
(2)求點O到平面CB1D1的距離.

查看答案和解析>>

同步練習(xí)冊答案