7.已知圓C:x2+y2-2x-4y+1=0上存在兩點(diǎn)關(guān)于直線l:x+my+1=0對(duì)稱,則實(shí)數(shù)m=-1.

分析 由題意直線l:x+my+1=0過圓心C(1,2),從而得到m=-1.

解答 解:∵圓C:x2+y2-2x-4y+1=0上存在兩點(diǎn)關(guān)于直線l:x+my+1=0對(duì)稱,
∴直線l:x+my+1=0過圓心C(1,2),
∴1+2m+1=0.解得m=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查圓的對(duì)稱性,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,四棱錐P-ABCD中,PD⊥底面ABCD,PD=DC=2AD,AD⊥DC,∠BCD=45°.
(1)設(shè)PD的中點(diǎn)為M,求證:AM∥平面PBC;
(2)求PA與平面PBC所成角的正弦值;
(3)設(shè)DC=a,求點(diǎn)D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.直線ρ=$\frac{1}{acosθ+3sinθ}$與圓ρ=2cosθ相切.求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)A=$[\begin{array}{l}{-1}&{2}&{0}\\{5}&{2}&{-3}\\{0}&{1}&{1}\end{array}]$,寫出-5A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)(x-3)2+(y-3)2=6,則$\frac{y}{x}$的最大值為3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.由曲線y=|x-1|與(x-1)2+y2=4所圍成較小扇形的面積是(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.πD.$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線y=2x+1與圓x2+y2=2的位置關(guān)系一定是( 。
A.相離B.相切
C.相交但直線不過圓心D.相交且直線過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量y(g)與尺寸x(mm)之間近似滿足關(guān)系式y(tǒng)=axb(a,b為大于0的常數(shù)).現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:
尺寸(mm)384858687888
質(zhì)量(g)16.818.820.722.424.025.5
對(duì)數(shù)據(jù)作了初步處理,相關(guān)統(tǒng)計(jì)量的值如下表:
$\sum_{i=1}^6{({ln{x_i}•ln{y_i}})}$$\sum_{i=1}^6{({ln{x_i}})}$$\sum_{i=1}^6{({ln{y_i}})}$${\sum_{i=1}^6{{{({ln{x_i}})}^2}}^{\;}}$
75.324.618.3101.4
(Ⅰ)根據(jù)所給數(shù)據(jù),求y關(guān)于x的回歸方程;
(Ⅱ)按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間(${\frac{e}{9}$,$\frac{e}{7}}$)內(nèi)時(shí)為優(yōu)等品.現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記ξ為取到優(yōu)等品的件數(shù),試求隨機(jī)變量ξ的分布列和期望.
附:對(duì)于一組數(shù)據(jù)(v1,u1),(v2,u2),…,(vn,un),其回歸直線u=α+βv的斜率和截距的最小二乘估計(jì)分別為$\widehat{β}$=$\frac{\sum_{i=1}^{n}{v}_{i}{μ}_{i}-n\overline{v}•\overline{u}}{\sum_{i=1}^{n}{v}_{i}^{2}-n{\overline{v}}^{2}}$,$\widehat{α}$=$\overline{u}$-$\widehat{β}$$\overline{v}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)A,B為n階方陣,滿足A+B=AB.若B=$(\begin{array}{l}{1}&{-3}&{0}\\{2}&{1}&{0}\\{0}&{0}&{2}\end{array})$,求矩陣A.

查看答案和解析>>

同步練習(xí)冊(cè)答案