8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線的斜率為-2,則C的離心率e=( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{5}}{2}$C.2D.$\sqrt{5}$

分析 求出雙曲線的漸近線方程,可得b=2a,由a,b,c的關(guān)系和離心率公式計(jì)算即可得到所求值.

解答 解:雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程為y=±$\frac{a}$x,
由題意可得-$\frac{a}$=-2,
即有b=2a,
c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5}$a,
即有e=$\frac{c}{a}$=$\sqrt{5}$.
故選:D.

點(diǎn)評 本題考查雙曲線的離心率的求法,注意運(yùn)用漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求數(shù)列{$\frac{2n-3}{{2}^{n-3}}$}前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線y=$\frac{a}$x的垂直的直線l交雙曲線于A,B兩點(diǎn),若向量$\overrightarrow{OA}$+$\overrightarrow{OB}$與$\overrightarrow{m}$=(9,-$\frac{1}{3}$)平行,則雙曲線C的離心率等于 (  )
A.$\frac{\sqrt{10}}{3}$B.$\frac{\sqrt{14}}{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖所示,雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,左、右頂點(diǎn)為A,B過F作x軸的垂線與雙曲線交于C,D兩點(diǎn),若AC⊥BD,則該雙曲線的離心率等于( 。
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,已知四邊形ABCD中,AB=CD=1,AD=$\sqrt{2}$BC=2,∠A+∠C=$\frac{3π}{4}$.則BD的長為$\frac{\sqrt{65}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),過F1的直線與雙曲線C的右支交于點(diǎn)P,若線段F1P的中點(diǎn)Q恰好在雙曲線C的一條漸近線,且$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$=0,則雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知F是雙曲線C:x2-$\frac{{y}^{2}}{8}$=1的右焦點(diǎn),若P是C的左支上一點(diǎn),A(0,6$\sqrt{6}$)是y軸上一點(diǎn),則△APF周長的最小值為32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線以銳角△ABC的頂點(diǎn)B,C為焦點(diǎn),且經(jīng)過點(diǎn)A,若△ABC內(nèi)角的對邊分別為a、b、c,且a=2,b=3,$\frac{csinA}{a}$=$\frac{\sqrt{3}}{2}$,則此雙曲線的離心率為(  )
A.$\frac{3+\sqrt{7}}{2}$B.$\frac{3-\sqrt{7}}{2}$C.3-$\sqrt{7}$D.3+$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+cosα}\\{y=sinα}\end{array}\right.$ (α為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρsin($θ+\frac{π}{4}$)=2$\sqrt{2}$.
(I)求曲線C與直線l在該直角坐標(biāo)系下的普通方程;
(Ⅱ)動(dòng)點(diǎn)A在曲線C上,動(dòng)點(diǎn)B在直線l上,定點(diǎn)P(-1,1),求|PB|+|PA|的最小值.

查看答案和解析>>

同步練習(xí)冊答案