分析 (1)橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,且經(jīng)過點(1,$\frac{{\sqrt{6}}}{2}$),可得$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{1}{{a}^{2}}+\frac{3}{2^{2}}=1}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a,c,b,即可得出橢圓C的方程;
(2)設(shè)直線BM的斜率為k,直線BM的方程為:y=k(x-2),設(shè)P(x1,y2),與橢圓方程聯(lián)立可得(2k2+1)x2-4k2x+8k2-4=0,解得x1,x2.可得P坐標(biāo),由y=k(x-2),令x=-2,解得M(-2,-4k),只要證明$\overrightarrow{AP}•\overrightarrow{OM}$=0,即可得出$\overrightarrow{AP}⊥\overrightarrow{OM}$.
(3)利用數(shù)量積運算即可得出$\overrightarrow{OP}•\overrightarrow{OM}$是否為定值.
解答 (1)解:∵橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,且經(jīng)過點(1,$\frac{{\sqrt{6}}}{2}$),
∴$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{1}{{a}^{2}}+\frac{3}{2^{2}}=1}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=2,c=$\sqrt{2}$=b,
∴橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$;
(2)證明:設(shè)直線BM的斜率為k,直線BM的方程為:y=k(x-2),設(shè)P(x1,y2),
聯(lián)立$\left\{\begin{array}{l}{y=k(x-2)}\\{{x}^{2}+2{y}^{2}=4}\end{array}\right.$,化為(2k2+1)x2-8k2x+8k2-4=0,
解得x1=$\frac{4{k}^{2}-2}{2{k}^{2}+1}$,x2=2.
∴y1=k(x1-2)=$\frac{-4k}{2{k}^{2}+1}$,
∴P$(\frac{4{k}^{2}-2}{2{k}^{2}+1},\frac{-4k}{2{k}^{2}+1})$,
由y=k(x-2),令x=-2,解得y=-4k,
∴M(-2,-4k),$\overrightarrow{OM}$=(-2,-4k),
又$\overrightarrow{AP}$=$(\frac{8{k}^{2}}{2{k}^{2}+1},\frac{-4k}{2{k}^{2}+1})$.
∴$\overrightarrow{AP}•\overrightarrow{OM}$=$\frac{-16{k}^{2}}{2{k}^{2}+1}+\frac{16{k}^{2}}{2{k}^{2}+1}$=0,
∴$\overrightarrow{AP}⊥\overrightarrow{OM}$.
即AP⊥OM.
(3)$\overrightarrow{OP}•\overrightarrow{OM}$=$\frac{-8{k}^{2}+4}{2{k}^{2}+1}+\frac{16{k}^{2}}{2{k}^{2}+1}$=$\frac{8{k}^{2}+4}{2{k}^{2}+1}$=4.
∴$\overrightarrow{OP}•\overrightarrow{OM}$=4為定值.
點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立得到交點坐標(biāo)、向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 偶函數(shù) | B. | 奇函數(shù) | ||
C. | 既不是偶函數(shù),也不是奇函數(shù) | D. | 奇偶性與k的取值有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com