分析 由極限可知f(x)=$\left\{\begin{array}{l}{0,x≤-1或x>1}\\{1+x,-1<x<1}\\{1,x=1}\end{array}\right.$,從而解得.
解答 解:當(dāng)x=1或0時(shí),f(x)=1,
當(dāng)x=-1時(shí),f(x)=0,
當(dāng)0<|x|<1時(shí),f(x)=$\underset{lim}{n→∞}$$\frac{1+x}{1+{x}^{2n}}$=1+x,
當(dāng)|x|>1時(shí),f(x)=$\underset{lim}{n→∞}$$\frac{1+x}{1+{x}^{2n}}$=0;
故f(x)=$\left\{\begin{array}{l}{0,x≤-1或x>1}\\{1+x,-1<x<1}\\{1,x=1}\end{array}\right.$,
故f(x)的間斷點(diǎn)為x=1,為跳躍間斷點(diǎn).
點(diǎn)評 本題考查了分類討論的思想應(yīng)用及函數(shù)的連續(xù)性的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-5)∪[-4,+∞) | B. | (-5,-4] | C. | (-∞,-4] | D. | [-4,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 橢圓 | B. | 線段 | C. | 雙曲線 | D. | 兩條射線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com