分析 (I)利用菱形的面積和橢圓的性質(zhì)即可得出;
(II)聯(lián)立直線方程和橢圓方程,消去y,運用韋達定理和判別式大于0,以及直線的斜率公式,化簡整理,即可得到y(tǒng)1y2的范圍.
解答 解:(I)由已知可得e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,$\frac{1}{2}$•2a•2b=8$\sqrt{2}$,
又a2=b2+c2,
解得c=2,b=2,a2=8.
∴橢圓的方程為$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1.
(II)直線L:y=kx+m與橢圓C交于兩個不同點A(x1,x2)和B(x2,y2),
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+2{y}^{2}=8}\end{array}\right.$,得(1+2k2)x2+4kmx+2m2-8=0,
△=16k2m2-4(1+2k2)(2m2-8)>0,化為8k2+4>m2,①
∴x1+x2=$\frac{-4km}{1+2{k}^{2}}$,x1x2=$\frac{2{m}^{2}-8}{1+2{k}^{2}}$.
∵滿足kOA•kOB=-$\frac{1}{2}$,
∴$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=-$\frac{1}{2}$.
∴y1y2=-$\frac{1}{2}$x1x2=-$\frac{1}{2}$•$\frac{2{m}^{2}-8}{1+2{k}^{2}}$=-$\frac{{m}^{2}-4}{1+2{k}^{2}}$,
y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2
=k2•$\frac{2{m}^{2}-8}{1+2{k}^{2}}$+km•$\frac{-4km}{1+2{k}^{2}}$+m2=$\frac{{m}^{2}-8{k}^{2}}{1+2{k}^{2}}$.
∴-$\frac{{m}^{2}-4}{1+2{k}^{2}}$=$\frac{{m}^{2}-8{k}^{2}}{1+2{k}^{2}}$.
∴4k2+2=m2,
即有y1y2=-$\frac{{m}^{2}-4}{1+2{k}^{2}}$=-$\frac{2+4{k}^{2}-4}{1+2{k}^{2}}$=$\frac{4}{1+2{k}^{2}}$-2,
則y1y2∈(-2,2].
點評 本題綜合考查了橢圓的標準方程及其性質(zhì)、直線與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關系、直線的斜率公式、菱形的面積計算公式等基礎知識與基本技能方法,考查了推理能力和計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-6,2] | B. | [-6,0)∪( 0,2] | C. | [-2,0)∪( 0,6] | D. | (0,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-3,5] | B. | (-3,5) | C. | (-∞,-3]∪[5,+∞) | D. | (-∞,-3)∪(5,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com