分析 把已知數(shù)列遞推式變形,可得數(shù)列{$\sqrt{{S}_{n}}$}是以$\sqrt{{S}_{1}}=\sqrt{{a}_{1}}=1$為首項,以2為公差的等差數(shù)列,由等差數(shù)列的通項公式得答案.
解答 解:由Sn$\sqrt{{S}_{n-1}}$-Sn-1$\sqrt{{S}_{n}}$=2$\sqrt{{S}_{n}{S}_{n-1}}$,
得$\frac{{S}_{n}\sqrt{{S}_{n-1}}}{\sqrt{{S}_{n}{S}_{n-1}}}-\frac{{S}_{n-1}\sqrt{{S}_{n}}}{\sqrt{{S}_{n}{S}_{n-1}}}=2$,
即$\sqrt{{S}_{n}}-\sqrt{{S}_{n-1}}=2$(n≥2),
∴數(shù)列{$\sqrt{{S}_{n}}$}是以$\sqrt{{S}_{1}}=\sqrt{{a}_{1}}=1$為首項,以2為公差的等差數(shù)列,
則$\sqrt{{S}_{n}}=1+2(n-1)=2n-1$.
點評 本題考查數(shù)列遞推式,考查了等差關(guān)系的確定,訓(xùn)練了等差數(shù)列通項公式的求法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com