【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E、F分別為BC、AD的中點(diǎn),點(diǎn)M在線段PD上.
(1)求證:EF⊥平面PAC;
(2)如果直線ME與平面PBC所成的角和直線ME與平
面ABCD所成的角相等,求的值.
【答案】(1)見解析;(2) .
【解析】試題分析: 由平行四邊形的性質(zhì)可得,即,由面面垂直的性質(zhì)得出平面,故,從而平面
以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè), ,求出平面,平面的法向量以及的坐標(biāo),根據(jù)線面角相等列方程求解即可得到答案
解析:(1)證明:在平行四邊形中,因為,,
所以.由分別為的中點(diǎn),得, 所以.
因為側(cè)面底面,且,所以底面.
又因為底面,所以.
又因為,平面,平面,所以平面.
(2)解:因為底面,,所以兩兩
垂直,以分別為、、,建立空間直角坐標(biāo)系,則
,
所以,,,
設(shè),則,
所以,,易得平面
的法向量.
設(shè)平面的法向量為,由,,得 令, 得.
因為直線與平面所成的角和此直線與平面所成的角相等,
所以,即,所以 ,
解得,或(舍). 綜上所得:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)已知點(diǎn),直線與曲線交于兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其最小正周期為.
(1)求的表達(dá)式;
(2)將函數(shù)的圖象向右平移個單位長度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若關(guān)于的方程在區(qū)間上有且只有一個實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,, 分別為的中點(diǎn),點(diǎn)在線段上.
(Ⅰ)求證:平面;
(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下表格記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù).乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以表示.
甲組 | 9 | 9 | 11 | 11 |
乙組 | 8 | 9 | 10 |
(1)如果,求乙組同學(xué)植樹棵數(shù)的平均數(shù)和方差;
(2)如果,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)為19的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的極值;
(2)若存在與函數(shù)的圖象都相切的直線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】取數(shù)游戲:每次游戲中,游戲人按動游泳按鈕,就從如圖:的三個窗口中各彈出一個數(shù)字,其中:最左邊窗口可隨機(jī)彈出數(shù)字4或3,中間窗口可隨機(jī)彈出3或2,最右邊窗口可隨機(jī)彈出2或1.若彈出的三個數(shù)字為“順子”(如:432),則可獲獎10元,若有相鄰兩位數(shù)字相同,則可獲獎8元,其他情況獲獎-2元.甲玩了8次游戲后,乙問甲的獲獎情況,甲說:“23元有余,28元不足,3除不盡.”那么甲在這8次游戲中得到“順子”、“相鄰兩位數(shù)字相同”、“其他情況”的次數(shù)依次為( )
A. 0,4,4 B. 2,2,4 C. 2,3,3 D. 1,3,4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡稱.某市為了了解人們對“一帶一路”的認(rèn)知程度,對不同年齡和不同職業(yè)的人舉辦了一次“一帶一路”知識競賽,滿分100分(90分及以上為認(rèn)知程度高).現(xiàn)從參賽者中抽取了人,按年齡分成5組,第一組: ,第二組: ,第三組: ,第四組: ,第五組: ,得到如圖所示的頻率分布直方圖,已知第一組有6人.
(1)求;
(2)求抽取的人的年齡的中位數(shù)(結(jié)果保留整數(shù));
(3)從該市大學(xué)生、軍人、醫(yī)務(wù)人員、工人、個體戶 五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記為1~5組,從這5個按年齡分的組和5個按職業(yè)分的組中每組各選派1人參加知識競賽,分別代表相應(yīng)組的成績,年齡組中1~5組的成績分別為93,96,97,94,90,職業(yè)組中1~5組的成績分別為93,98,94,95,90.
(Ⅰ)分別求5個年齡組和5個職業(yè)組成績的平均數(shù)和方差;
(Ⅱ)以上述數(shù)據(jù)為依據(jù),評價5個年齡組和5個職業(yè)組對“一帶一路”的認(rèn)知程度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,則①數(shù)列單調(diào)遞增;②;③對于給定的實(shí)數(shù),若對任意的成立,必有.上述三個結(jié)論中正確個數(shù)是( )
A.1個B.2個C.3個D.0個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com