分析 通過題意可得a1a2=14、a3=4,同理可得:a4=8,a5=2,a6=6,a7=2,a8=2,a9=4,a10=8,以此類推可得:a6n+k=ak(k∈N*,k≥3),進而可得結(jié)論.
解答 解:∵a1=2,a2=7,an+2是anan+1的個位數(shù)字,
∴a1a2=14,∴a3=4.
∴a2a3=28,∴a4=8,
a3a4=32,∴a5=2,
a4a5=16,∴a6=6,
a5a6=12,∴a7=2,
a6a7=12,∴a8=2,
a7a8=4,∴a9=4,
a8a9=8,∴a10=8,
…
以此類推可得:a6n+k=ak(k∈N*,k≥3).
∴S242=a1+a2+40(a3+a4+a5+a6+a7+a8)
=2+7+40×(4+8+2+6+2+2)
=969,
∴S242-10a6=969-10×6=909.
故答案為:909.
點評 本題考查數(shù)列的周期性,考查推理能力與計算能力,考查運算求解能力,注意解題方法的積累,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{4}$ | B. | $\frac{11}{7}$ | C. | 2 | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com