分析 (Ⅰ)只要證明BC與平面ABFE內(nèi)的AB,BF垂直即可;
(Ⅱ)連接DF,只要證明DF∥MN,AD∥BM,兩腰兩個平面平行的判定定理可得.
解答 證明:(Ⅰ)由已知得到BF=BM=F=,∴∠BFC=60°,由余弦定理得到BC=$\sqrt{3}$,∴BC2+BF2=FC2,∴BC⊥FB,
又AB⊥BC,∴BC⊥平面ABFE;
(Ⅱ)連接DF,∵M(jìn),N是FC,CD的中點(diǎn),∴MN∥DF,
∵DE∥FC,AE∥FB,
∴平面AED∥平面BFM,并且,∠A=∠B=90°,EF∥AB,
∴幾何體AED-BFM是正三棱柱,∴AB∥DM∴AD∥BM,
∴平面ADF∥平面BMN.
又AF?平面ADF,
∴AF∥平面BMN.
點(diǎn)評 本題考查了線面垂直和線面平行的判定定理和性質(zhì)定理的運(yùn)用;關(guān)鍵是熟練掌握定理成立的條件,正確運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1:2 | B. | 2:5 | C. | 5:2 | D. | 2:1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
志愿 | 第一志愿 | 第二志愿 | 第三志愿 |
學(xué)校 | 1 | 2 | 3 |
專業(yè) | 第1專業(yè) | 第1專業(yè) | 第1專業(yè) |
第2專業(yè) | 第2專業(yè) | 第2專業(yè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com