3.化簡下列各式.
(1)$\sqrt{1+sinθ}$-$\sqrt{1-sinθ}$($\frac{3π}{2}$<θ<2π)
(2)$\frac{sin(2α+β)}{sinα}$-2cos(α+β)

分析 利用三角恒等變換,化簡所給的式子,可得結(jié)果.

解答 解:(1)∵$\frac{3π}{2}$<θ<2π,∴$\frac{3π}{4}$<$\frac{θ}{2}$<π,cos$\frac{θ}{2}$+sin$\frac{θ}{2}$<0,cos$\frac{θ}{2}$-sin$\frac{θ}{2}$<0,
∴$\sqrt{1+sinθ}$-$\sqrt{1-sinθ}$=|cos$\frac{θ}{2}$+sin$\frac{θ}{2}$|-|cos$\frac{θ}{2}$-sin$\frac{θ}{2}$|=-(cos$\frac{θ}{2}$+sin$\frac{θ}{2}$)-(-cos$\frac{θ}{2}$+sin$\frac{θ}{2}$)
=-2sin$\frac{θ}{2}$.
(2)$\frac{sin(2α+β)}{sinα}$-2cos(α+β)=$\frac{sin(α+β)cosα+cos(α+β)sinα}{sinα}$-$\frac{2cos(α+β)•sinα}{sinα}$=$\frac{sin(α+β)cosα-cos(α+β)sinα}{sinα}$=$\frac{sin(α+β-α)}{sinα}$=$\frac{sinβ}{sinα}$.

點(diǎn)評 本題主要考查利用三角恒等變換進(jìn)行化簡求值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{x}{lnx}$-ax,a>0.
(1)若函數(shù)y=f(x)在(1,+∞)上是減函數(shù),求實(shí)數(shù)a的最小值
(2)若存在x1∈[e,e2],使f(x1)≤$\frac{1}{4}$成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,若sin(A+B-C)+sin(B-A-C)=0,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)的定義域和值域均為[0,+∞),且對任意x∈[0,+∞),$\sqrt{x}$,$\frac{\sqrt{f(x)}}{2}$,$\sqrt{3}$都成等差數(shù)列,又正項(xiàng)數(shù)列{an}中,a1=3,其前n項(xiàng)和Sn滿足Sn+1=f(Sn)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若$\sqrt{_{n}}$是$\frac{3}{{a}_{n+1}}$,$\frac{3}{{a}_{n}}$的等比中項(xiàng),求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知k∈R,z是非零復(fù)數(shù),滿足Rez+Imz=0,(1+$\overline{z}$)2-kz=1-(1+i)2
(1)求z的值;
(2)設(shè)m∈[log2k,k],求|k+m•z|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知數(shù)列{an}是等差數(shù)列,a1=tan225°,a5=13a1,設(shè)Sn為數(shù)列{(-1)nan}的前n項(xiàng)和,則S2016等于(  )
A.2016B.-2016C.3024D.-3024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=ln(x2+1)的圖象在點(diǎn)(1,f(1))處的切線的傾斜角為( 。
A.0B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)等比數(shù)列{an}前n項(xiàng)和為Sn,若al+8a4=0,則$\frac{S_4}{S_3}$=(  )
A.-$\frac{5}{3}$B.$\frac{15}{7}$C.$\frac{5}{6}$D.$\frac{15}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=ax+sinx在[$\frac{π}{3}$,π]上遞增,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,-$\frac{1}{2}$]B.(-∞,-$\frac{1}{2}$)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

同步練習(xí)冊答案