11.已知a>0,${(\frac{a}{{\sqrt{x}}}-x)^6}$展開式的常數(shù)項為15,則$\int_{-a}^a{({x^2}+x+\sqrt{4-{x^2}}})dx$=$\frac{2}{3}+\frac{2π}{3}+\sqrt{3}$.

分析 由條件利用二項式展開式的通項公式求得a的值,再利用積分的運算性質(zhì)、法則,求得要求式子的值.

解答 解:由${(\frac{a}{{\sqrt{x}}}-x)^6}$的展開式的通項公式為Tr+1=${C}_{6}^{r}$•(-1)r•a6-r•${x}^{\frac{3r-6}{2}}$,
令$\frac{3r-6}{2}$=0,求得r=2,故常數(shù)項為$C_6^4{a^4}=15$,可得a=1,
因此原式為$\int_{-1}^1{({x^2}+x+\sqrt{4-{x^2}})}dx=2\int_0^1{({x^2}+\sqrt{4-{x^2}})}dx=2(\int_0^1{x^2}dx+\int_0^1{\sqrt{4-{x^2}}}dx)$
=$2(\frac{1}{3}+\frac{{π•{2^2}}}{12}+\frac{1}{2}×1×\sqrt{3})=\frac{2}{3}+\frac{2π}{3}+\sqrt{3}$,
故答案為:$\frac{2}{3}+\frac{2π}{3}+\sqrt{3}$.

點評 本題主要考查二項式定理的應(yīng)用,二項式展開式的通項公式,積分的運算,是一道中檔的常規(guī)問題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的各條棱中,最長的棱的長度為( 。
A.$2\sqrt{3}$B.$2\sqrt{2}$C.$\sqrt{10}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.“吸煙有害健康,吸煙會對身體造成傷害”,哈爾濱市于2012年5月31日規(guī)定室內(nèi)場所禁止吸煙.美國癌癥協(xié)會研究表明,開始吸煙年齡(X)分別為16歲、18歲、20歲和22歲,其得肺癌的相對危險度(Y)依次為15.10、12.81、9.72、3.21;每天吸煙(U)10支、20支、30支者,其得肺癌的相對危險度(v)分別為7.5、9.5和16.6.用r1表示變量X與y之間的線性相關(guān)系數(shù),用r2表示變量U與V之間的線性相關(guān)系數(shù),則下列說法正確的是( 。
A.rl=r2B.r1>r2>0C.0<r1<r2D.r1<0<r2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z滿足z(1+i)=1(i為虛數(shù)單位),則z=( 。
A.$\frac{1-i}{2}$B.$\frac{1+i}{2}$C.1-iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|x2-3x<0},B={x||x|<2},則A∩B=(  )
A.{x|2<x<3}B.{x|-2<x<0}C.{x|0<x<2}D.{x|-2<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知a>0,b>0,且a+b=2,則$\frac{1}{a}+\frac{2}$的最小值為$\frac{3}{2}$+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=sin(2ωx一$\frac{π}{4}$)(ω>0)的最小正周期為π,則函數(shù)f(x)的圖象( 。
A.關(guān)于點($\frac{π}{8}$,0)對稱B.關(guān)于直線x=$\frac{π}{8}$對稱
C.關(guān)于點(-$\frac{π}{4}$,0)對稱D.關(guān)于直線x=-$\frac{π}{4}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了測量河對岸兩點A,B之間的距離,在河岸的這邊選取點C、D,測得∠ADC=75°,∠BDC=60°,∠ACD=45°,∠BCD=75°,CD=20$\sqrt{3}$m,設(shè)A,B,C,D在同一平面內(nèi),求A,B之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知i是虛數(shù)單位,若復(fù)數(shù)z滿足z=$\frac{{i}^{3}}{1+i}$,則z為( 。
A.$\frac{1+i}{2}$B.$\frac{1-i}{2}$C.$\frac{-1-i}{2}$D.$\frac{-1+i}{2}$

查看答案和解析>>

同步練習(xí)冊答案