6.設(shè)集合A={x|x2-3x<0},B={x||x|<2},則A∩B=( 。
A.{x|2<x<3}B.{x|-2<x<0}C.{x|0<x<2}D.{x|-2<x<3}

分析 求出A與B中不等式的解集分別確定出A與B,找出兩集合的交集即可.

解答 解:由題意可知A={x|0<x<3},B={x|-2<x<2},
∴A∩B={x|0<x<2}.
故選:C.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=cos(ωx+φ),(ω>0,-$\frac{π}{2}$<φ<0)的最小正周期為π,且f($\frac{π}{6}$)=1.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{3}$個單位長度,再將所得圖象上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)在[-$\frac{π}{6}$,$\frac{2π}{3}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F(2,0),點P(2,$\frac{{\sqrt{6}}}{3}$)在橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F的直線,交橢圓C于A、B兩點,點M在橢圓C上,坐標(biāo)原點O恰為△ABM的重心,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)在定義域內(nèi)滿足:(1)對于任意不相等的x1,x2,有x1f(x2)+x2f(x1)>x1f(x1)+x2f(x2);(2)存在正數(shù)M,使得|f(x)|≤M,則稱函數(shù)f(x)為“單通道函數(shù)”,給出以下4個函數(shù):
①$f(x)=sin(x+\frac{π}{4})+cos(x+\frac{π}{4})$,x∈(0,π);
②g(x)=lnx+ex,x∈[1,2];
③h(x)=x3-3x2,x∈[1,2];
④φ(x)=$\left\{\begin{array}{l}{-{2}^{-x},-1≤x≤0}\\{lo{g}_{\frac{1}{2}}(x-1)-1,0<x≤1}\end{array}\right.$,其中,“單通道函數(shù)”有( 。
A.①③④B.①②④C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知各項均為正數(shù)的等比數(shù)列{an}中,a5•a6=4,則數(shù)列{log2an}的前10項和為( 。
A.5B.6C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知a>0,${(\frac{a}{{\sqrt{x}}}-x)^6}$展開式的常數(shù)項為15,則$\int_{-a}^a{({x^2}+x+\sqrt{4-{x^2}}})dx$=$\frac{2}{3}+\frac{2π}{3}+\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某中學(xué)共8個藝術(shù)社團,現(xiàn)從中選10名同學(xué)組成新春社團慰問小組,其中書法社團需選出3名同學(xué),其他各社團各選出1名同學(xué),現(xiàn)從這10名同學(xué)中隨機選取3名同學(xué),到社區(qū)養(yǎng)老院參加“新春送歡樂”活動(每位同學(xué)被選到的可能性相同),則選出的3名同學(xué)來自不同社團的概率為( 。
A.$\frac{7}{10}$B.$\frac{7}{24}$C.$\frac{49}{60}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.定義$\overline{abc}$是一個三位數(shù),其中各數(shù)位上的數(shù)字a,b,c∈{0,1,2,3,4,5,6,7,8,9}且不全相同,定義如下運算f:把$\overline{abc}$的三個數(shù)字a,b,c自左到右分別由大到小排列和由小到大排列(若非零數(shù)字不足三位則在前面補0),然后用“較大數(shù)”減去“較小數(shù)”,例如:f(100)=100-001-099,f(102)=210-0.12-198,如下定義一個三位數(shù)序列:第一次實施運算f的結(jié)果記為$\overline{{a}_{1}_{1}{c}_{1}}$,對于n>1且n∈N,$\overline{{a}_{n}_{n}{c}_{n}}=f(\overline{{a}_{n-1}_{n-1}{c}_{n-1}})$,將$\overline{{a}_{n}_{n}{c}_{n}}$的三個數(shù)字中的最大數(shù)字與最小數(shù)字的差記為dn
(Ⅰ)當(dāng)$\overline{abc}$=636時,求$\overline{{a}_{1}_{1}{c}_{1}}$,$\overline{{a}_{2}_{2}{c}_{2}}$及d2的值;
(Ⅱ)若d1=6,求證:當(dāng)n>1時,dn=5;
(Ⅲ)求證:對任意三位數(shù)$\overline{abc}$,n≥6時,$\overline{{a}_{n}_{n}{c}_{n}}$=495.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=$\frac{1}{\sqrt{2^x-1}}$+ln(x-1)的定義域是(1,+∞).

查看答案和解析>>

同步練習(xí)冊答案