19.已知復(fù)數(shù)z滿(mǎn)足z(1+i)=1(i為虛數(shù)單位),則z=( 。
A.$\frac{1-i}{2}$B.$\frac{1+i}{2}$C.1-iD.1+i

分析 直接利用復(fù)數(shù)的除法的運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:由z(1+i)=1,得z=$\frac{1}{1+i}$=$\frac{1-i}{(1+i)(1-i)}$=$\frac{1-i}{2}$,
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的除法的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在等差數(shù)列{an}中,已知$\frac{{S}_{100}}{{S}_{10}}$=100,那么$\frac{{a}_{100}}{{a}_{10}}$=$\frac{199}{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.$\frac{i-1}{1+i}$=( 。
A.-iB.iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在等腰直角△ABC中,AB=AC=4,點(diǎn)P是邊AB上異于A、B的一點(diǎn),光線從點(diǎn)P出發(fā)經(jīng)過(guò)BC、CA反射后又回到點(diǎn)P,光線交線段BC于點(diǎn)Q,交線段CA于點(diǎn)R,若光線QR經(jīng)過(guò)△ABC的重心,求線段AP的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若函數(shù)f(x)在定義域內(nèi)滿(mǎn)足:(1)對(duì)于任意不相等的x1,x2,有x1f(x2)+x2f(x1)>x1f(x1)+x2f(x2);(2)存在正數(shù)M,使得|f(x)|≤M,則稱(chēng)函數(shù)f(x)為“單通道函數(shù)”,給出以下4個(gè)函數(shù):
①$f(x)=sin(x+\frac{π}{4})+cos(x+\frac{π}{4})$,x∈(0,π);
②g(x)=lnx+ex,x∈[1,2];
③h(x)=x3-3x2,x∈[1,2];
④φ(x)=$\left\{\begin{array}{l}{-{2}^{-x},-1≤x≤0}\\{lo{g}_{\frac{1}{2}}(x-1)-1,0<x≤1}\end{array}\right.$,其中,“單通道函數(shù)”有(  )
A.①③④B.①②④C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,平面四邊形ABCD中,CD=$\sqrt{3}$,∠CBD=30°,∠BCD=120°,AB=$\sqrt{5}$,AD=2$\sqrt{2}$,求
(Ⅰ)BD;
(Ⅱ)∠ADB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知a>0,${(\frac{a}{{\sqrt{x}}}-x)^6}$展開(kāi)式的常數(shù)項(xiàng)為15,則$\int_{-a}^a{({x^2}+x+\sqrt{4-{x^2}}})dx$=$\frac{2}{3}+\frac{2π}{3}+\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若x,y滿(mǎn)足不等式組$\left\{\begin{array}{l}3x-4≥0\\ y≥1\\ 3x+y-6≤0\end{array}\right.$,表示平面區(qū)域?yàn)镈,已知點(diǎn)O(0,0),A(1,0),點(diǎn)M是D上的動(dòng)點(diǎn),$\overrightarrow{OA}•\overrightarrow{OM}=λ|\overrightarrow{OM}|$,則λ的最大值為$\frac{{5\sqrt{34}}}{34}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若cos2x=$\frac{1}{2}$,其中$\frac{π}{2}$<x<π,則x的值為( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案