1.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的各條棱中,最長的棱的長度為( 。
A.$2\sqrt{3}$B.$2\sqrt{2}$C.$\sqrt{10}$D.$\sqrt{13}$

分析 畫出幾何體的圖形,判斷最長的棱長,然后求解即可.

解答 解:由三視圖可知幾何體的直觀圖如圖:則,AB=BC=2,CE=2,BD=1,CE⊥平面ABC,BD⊥平面ABC,AB⊥BC,顯然AE是幾何體的最長的棱長,
AC=2$\sqrt{2}$,
AE=$\sqrt{(2\sqrt{2})^{2}+{2}^{2}}$=2$\sqrt{3}$.
故選:A.

點評 本題考查幾何體的作圖的畫法,幾何體棱長的求法,考查空間想象能力以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.設F(a,b)=$\left\{\begin{array}{l}{2a-2b,a≥b}\\{2b-2a,a<b}\end{array}\right.$,有關F(a,b)有以下四個命題:
①?a0,b0∈R,使得F(a0,b0)<0;
②若a,b,c∈R,則F(a,b)+F(b,c)≥F(c,a);
③不等式F(x,2)≤F(1-x,1)的解集是[1,+∞);
④若對任意實數(shù)x,m[F(x,-2)+F(x,2)]>2m+6恒成立,則m的取值范圍是[1,+∞).
則所有正確命題的序號是②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.賓館有客房300間,當每間房租金20元時,正好全部租出去,若租金每提高1元.客房出租數(shù)就減少5間,求租金提高多少元時,客房租金總收入最高?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在等差數(shù)列{an}中,已知$\frac{{S}_{100}}{{S}_{10}}$=100,那么$\frac{{a}_{100}}{{a}_{10}}$=$\frac{199}{19}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設函數(shù)f(x)=cos(ωx+φ),(ω>0,-$\frac{π}{2}$<φ<0)的最小正周期為π,且f($\frac{π}{6}$)=1.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調遞增區(qū)間;
(3)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{3}$個單位長度,再將所得圖象上各點的橫坐標伸長到原來的2倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求g(x)在[-$\frac{π}{6}$,$\frac{2π}{3}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.等差數(shù)列{an}中,a3=5,S6=36,則S9=( 。
A.17B.19C.81D.100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.過拋物線y2=8x的焦點作直線交拋物線于A(x1,x2)、B(x2,y2)兩點,若|AB|=16,則x1+x2=12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.$\frac{i-1}{1+i}$=( 。
A.-iB.iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知a>0,${(\frac{a}{{\sqrt{x}}}-x)^6}$展開式的常數(shù)項為15,則$\int_{-a}^a{({x^2}+x+\sqrt{4-{x^2}}})dx$=$\frac{2}{3}+\frac{2π}{3}+\sqrt{3}$.

查看答案和解析>>

同步練習冊答案