20.函數(shù)y=$\sqrt{x-1}$的定義域?yàn)閇1,+∞),值域?yàn)閇0,+∞).

分析 根據(jù)函數(shù)成立的條件以及函數(shù)的單調(diào)性的性質(zhì)進(jìn)行求解即可.

解答 解:要使函數(shù)有意義,則x-1≥0,得x≥1,即函數(shù)的定義域?yàn)閇1,+∞),
∵y=$\sqrt{x-1}$在[1,+∞)上為增函數(shù),
∴y≥$\sqrt{1-1}$=0,
即函數(shù)的值域?yàn)閇0,+∞),
故答案為:[1,+∞),[0,+∞)

點(diǎn)評(píng) 本題主要考查函數(shù)定義域和值域的求解,根據(jù)函數(shù)單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知非零向量$\overrightarrow{a}$,$\overrightarrow$滿(mǎn)足|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|且|$\overrightarrow{a}$+2$\overrightarrow$|>|m$\overrightarrow$|恒成立,則實(shí)數(shù)m的取值范圍是(  )
A.[-2,2]B.[-$\frac{5}{2}$,$\frac{5}{2}$]C.(-2,2)D.(-$\frac{5}{2}$,$\frac{5}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.動(dòng)點(diǎn)P到定點(diǎn)A(-2,0)與B(-2,4)距離相等,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.終邊在折線(xiàn)y=$\sqrt{3}$|x|所有角的集合是{α|α=60°+k•360°或α=120°+k•360°,k∈Z},在這個(gè)集合中,介于[-360°,360°)的角的集合是{-300°,-240°60°,120°}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知f(x)是定義在R上的偶函數(shù),在(-∞,0]上單調(diào)遞增,并且有f(a+1)<f(-2a+1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知m,n∈R,函數(shù)f(x)=ln(x+m)的圖象與函數(shù)g(x)=ex-1+n的圖象在x=1處有公共的切線(xiàn).
(1)求m,n的值;
(2)設(shè)b>a>0,求證:$\sqrt{ab}<\frac{b-a}{f(b)-f(a)}<\frac{a+b}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中,已知AC=1,∠ABC=$\frac{2π}{3}$,∠BAC=θ,記f(θ)=$\overrightarrow{AB}$$•\overrightarrow{BC}$,則f(θ)的值域?yàn)椋ā 。?table class="qanwser">A.[0,$\frac{1}{6}$)B.(0,$\frac{1}{6}$)C.[0,$\frac{1}{6}$]D.(0,$\frac{1}{6}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,S6=21且S15=120,則$\frac{{S}_{n}+20}{{a}_{n}+1}$的最小值是$\frac{35}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)f(x)為單調(diào)且二階可導(dǎo)函數(shù),其反函數(shù)為x=g(y),且已知f(1)=2,f′(1)=-$\frac{1}{\sqrt{3}}$,f″(1)=1,求g″(2).

查看答案和解析>>

同步練習(xí)冊(cè)答案