5.已知m,n∈R,函數(shù)f(x)=ln(x+m)的圖象與函數(shù)g(x)=ex-1+n的圖象在x=1處有公共的切線.
(1)求m,n的值;
(2)設(shè)b>a>0,求證:$\sqrt{ab}<\frac{b-a}{f(b)-f(a)}<\frac{a+b}{2}$.

分析 (1)求導(dǎo)數(shù),利用函數(shù)f(x)=ln(x+m)的圖象與函數(shù)g(x)=ex-1+n的圖象在x=1處有公共的切線,可得f′(1)=g′(1),求出m,求出函數(shù)f(x)=ln(x+m)的圖象在x=1處的切線方程為y=x-1,即可求出n的值;
(2)求出切線的斜率,即可證明結(jié)論.

解答 (1)解:∵g(x)=ex-1+n,
∴g′(x)=ex-1,
∵f(x)=ln(x+m),
∴f′(x)=$\frac{1}{x+m}$,
∵函數(shù)f(x)=ln(x+m)的圖象與函數(shù)g(x)=ex-1+n的圖象在x=1處有公共的切線,
∴f′(1)=g′(1),
∴$\frac{1}{1+m}$=1,
∴m=0,
∴函數(shù)f(x)=ln(x+m)的圖象在x=1處的切線方程為y=x-1.
函數(shù)g(x)=ex-1+n的圖象在x=1處的切線方程為y-1-n=x-1,即y=x+n,∴n=-1.
(2)證明:f(x)=lnx,∴f′(x)=$\frac{1}{x}$,
∵b>a>0,
∴a<$\frac{b-a}{f(b)-f(a)}$<b.
∴$\sqrt{ab}$<$\frac{b-a}{f(b)-f(a)}$<$\frac{a+b}{2}$.

點評 本題考查利用導(dǎo)數(shù)求切線的方程,考查不等式的證明,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知三棱柱ABC-A′B′C′的側(cè)面均是矩形,求證:它的任意兩個側(cè)面的面積和大于第三個側(cè)面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知sin(α-$\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$,則sin($\frac{5π}{4}$-α)的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知偶函數(shù)f(x)定義域R,且在[0,+∞)上是減函數(shù),比較f(-$\frac{3}{4}$)和f(a2-a+1)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=$\sqrt{x-1}$的定義域為[1,+∞),值域為[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=$\frac{{x}^{2}}{2{x}^{2}-1}$,求f(-1),f(2),f(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線ax+y+1=0被圓x2+y2-2ax+a=0截得的弦長為2,則實數(shù)a的值是-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.過點(2,3)且與x軸垂直的直線方程為x-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.傾斜角是45°,并且與原點的距離是5$\sqrt{2}$的直線的方程為(  )
A.x-y-10=0B.x-y-10=0或x-y+10=0
C.x-y+5$\sqrt{2}$=0D.x-y+5$\sqrt{2}$=0或x-y-5$\sqrt{2}$=0

查看答案和解析>>

同步練習(xí)冊答案