分析 求得橢圓的焦點為(±5,0),設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),運用a,b,c的關(guān)系和離心率公式,解方程可得a=3,b=4,進而得到雙曲線的方程.
解答 解:橢圓$\frac{x^2}{49}+\frac{y^2}{24}=1$的焦點為(±5,0),
設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),
可得c=5,即a2+b2=25,
又e=$\frac{c}{a}$=$\frac{5}{3}$,
解得a=3,b=4,
即有雙曲線的方程為$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1.
點評 本題考查雙曲線的方程和性質(zhì),主要考查待定系數(shù)法求方程,同時考查離心率公式的運用,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[\sqrt{2},+∞)$ | B. | [2,+∞) | C. | $({1,\sqrt{2}}]$ | D. | (1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±4x | B. | y=±2x | C. | y=±$\frac{1}{2}$x | D. | y=±$\frac{1}{4}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com