4.已知雙曲線M:$\frac{x^2}{4}$-$\frac{y^2}{5}$=1與拋物線N:y2=2px(p>0)的一個(gè)交點(diǎn)為A(4,m).
(1)求拋物線N的標(biāo)準(zhǔn)方程;
(2)設(shè)雙曲線M在實(shí)軸上的頂點(diǎn)為C、D,求$\overrightarrow{AC}$•$\overrightarrow{AD}$的值.

分析 (1)將A的坐標(biāo)代入雙曲線的方程,可得m,再將A的坐標(biāo)代入拋物線的方程可得p,即可得到拋物線的方程;
(2)求得雙曲線的頂點(diǎn)C,D的坐標(biāo),運(yùn)用向量的數(shù)量積的坐標(biāo)表示,計(jì)算即可得到所求值.

解答 解:(1)將A(4,m)代入雙曲線的方程可得
$\frac{16}{4}$-$\frac{{m}^{2}}{5}$=1,解得m=±$\sqrt{15}$,
再將A(4,±$\sqrt{15}$),代入拋物線的方程可得
15=8p,解得p=$\frac{15}{8}$,
則y2=$\frac{15}{4}$x;
(2)雙曲線M在實(shí)軸上的頂點(diǎn)為C(-2,0)、D(2,0),
又A(4,m),
則$\overrightarrow{AC}$•$\overrightarrow{AD}$=(-2-4,-m)•(2-4,-m)=(-6)×(-2)+m2
=12+15=27.

點(diǎn)評(píng) 本題考查雙曲線的方程和性質(zhì),同時(shí)考查拋物線的方程的運(yùn)用,以及向量的數(shù)量積的坐標(biāo)表示,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.求方程為$\frac{x^2}{4}-{y^2}=1$的雙曲線的頂點(diǎn)坐標(biāo)是(±2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.過(guò)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}={1^{\;}}({a>b>0})$右焦點(diǎn)作雙曲線其中一條漸近線的垂線與兩漸近線分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),且△AOB的面積為$\frac{{6{a^2}}}{5}$,則該雙曲線的離心率為(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{5}}}{3}$C.$\frac{{\sqrt{13}}}{2}$D.$\frac{{\sqrt{13}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線的斜率為k,k是mn的最小值,其中m,n滿足$\frac{1}{m}+\frac{1}{n}=\sqrt{mn}$,且右焦點(diǎn)與拋物線y2=4$\sqrt{5}$x的焦點(diǎn)重合,則該雙曲線的離心率等于( 。
A.$\sqrt{2}$B.2$\sqrt{5}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若斜率為k(k≠0)的直線l與雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}=1$相交于兩個(gè)不同的點(diǎn)M,N,且線段MN的中垂線與兩坐標(biāo)軸圍成的三角形的面積為$\frac{81}{2}$,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)雙曲線$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{9}$=λ的一條漸近線方程為x+2y=0,則a的值為(  )
A.6B.-6C.36D.-36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知一條雙曲線的漸近線方程為y=$\frac{1}{2}$x,且通過(guò)點(diǎn)A(3,3),則該雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{\frac{27}{4}}$-$\frac{{x}^{2}}{27}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求與橢圓$\frac{x^2}{49}+\frac{y^2}{24}=1$有公共焦點(diǎn),且離心率$e=\frac{5}{3}$的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=lg(2+x)-lg(2-x).
(1)判定函數(shù)f(x)的奇偶性,并加以證明;
(2)判定f(x)的單調(diào)性(不用證明),并求不等式f(1-x)+f(3-2x)<0的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案