3.過點(diǎn)(1,0),且與直線2x+y-10=0的斜率相同的直線方程是2x+y-2=0.

分析 設(shè)所求的直線為:2x+y+m=0,把點(diǎn)(1,0)代入解得m即可得出.

解答 解:設(shè)所求的直線為:2x+y+m=0,
把點(diǎn)(1,0)代入可得2+0+m=0,解得m=-2.
∴要求的直線方程為:2x+y-2=0,
故答案為:2x+y-2=0.

點(diǎn)評(píng) 本題考查了直線的方程、斜率的求法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線$x+y+\sqrt{3}=0$的傾斜角是( 。
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)化簡:$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$
(2)已知tan(2π-α)=3,求sin2α+sinαcosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow{m}$=(sinB,1-cosB),$\overrightarrow{n}$=(2,0)且$\overrightarrow{m},\overrightarrow{n}$的夾角是$\frac{π}{3}$,其中A,B,C是△ABC的內(nèi)角,它們所對(duì)的邊分別為a,b,c.
(1)求角B的大。
(2)若b=2,求△ABC的周長取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為:$\stackrel{∧}{y}$=0.85x-85.71,則下列結(jié)論中不正確的是( 。
A.3與3x2+2ax+b=0具有正的線性相關(guān)關(guān)系
B.回歸直線過樣本點(diǎn)的中心($\overline{x}$,$\overline{y}$)
C.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg
D.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集合M={0,1,2},N={-1,0,1},則M∩N=( 。
A.ΦB.{0,1}C.{0,1,2}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知角α的終邊過點(diǎn)P(4,-3).
(Ⅰ)寫出sinα、cosα、tanα值;
(Ⅱ)求$\frac{{sin(π+α)+2sin(\frac{π}{2}-α)}}{2cos(π-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AD⊥CD,且DB平分∠ADC,E為PC的中點(diǎn),AD=CD=1,DB=2$\sqrt{2}$,PD=2.
 (1)證明:PA∥平面BDE;
(2)證明:AC⊥PB;
(3)求三棱錐E-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow a$=(2,-3),$\overrightarrow b$=(-5,8),則($\overrightarrow a$+$\overrightarrow b$)•$\overrightarrow b$等于( 。
A.-34B.34C.55D.-55

查看答案和解析>>

同步練習(xí)冊(cè)答案